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Editor’s note

The Association for the Philosophy of Mathematical Practice 
(APMP) is a common forum that articulates and stimulates 
research in philosophy of mathematics from the perspective of 
mathematical practice. Created in 2009, the aim of the APMP is to 
bring together researchers that work on a variety of topics ranging 
from the way mathematics is done and evaluated to the study of its 
epistemology, its history, and the educational strategies associated 
to it. To achieve the goal of creating and maintaining a strong 
community of researchers, the APMP has organized international 
meetings. The first Meeting was held in 2010 in Belgium at the 
Vrije Universiteit Brussel. The second, in 2013, took place in North 
America, at the University of Illinois, Urbana-Champaign, USA. 
The third of APMP Meeting, in 2015, returned to Europe. It was 
held at the Institut Henry Poincaré in Paris, France. Now, in its 
Fourth edition, the APMP International Meeting will occur in 
Latin America. 

This book presents the programme of the 2017 conference – taking 
place at the Universidade Federal da Bahia (UFBA), Salvador, 
Brazil, between the 23rd and 27th of October. Here you will find the 
abstracts of the invited and accepted papers, as well as the list of 
all participants.

We would like to express our gratitude and recognize the utmost 
importance of the  support given by various colleagues and 
institutions that helped the Fourth Meeting to become a reality.

We would like to thank João Carlos Salles, for the indispensable 
academic and financial support provides as the president of 
UFBA. Special thanks to Waldomiro da Silva Filho (director of the 
Graduate Program in Philosophy and president of the Brazilian 
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Society for Analytic Philosophy (SBFA)) and also to Luiz Marcio 
Farias (director of the Graduate Program in Teaching, Philosophy 
and History of Science). We also thank the Brazilian Society for 
Logic (SBL) and its president, Cezar Augusto Mortari.

Besides the financial support of UFBA, this event would not have 
been possible without the encouragement of the Brazilian Federal 
Agency for Support and Evaluation of Graduate Education (CAPES), 
and of the National Counsel of Technological and Scientific 
Development (CNPq). Given the difficult times that Brazil is going 
through, it is noteworthy that the Meeting was able to secure public 
investment. We consider it a clear indication of the importance of 
our area of research and we recognize our responsibility to make 
the most of this event. 

Finally, we would also like to acknowledge the support provided 
by the APMP, represented by its president, Dirk Schlimm, by 
all members of the Scientific Committee, coordinated by Marco 
Panza, and by the members of the Organizing Committee. Last but 
not least, we express our deepest gratitude to all the colleagues and 
students who participated in the event. After all, the sharing of our 
work and our interest in the philosophy of mathematical practice 
is the very reason why the APMP exists.

The editors.
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PROGRAM
 All talks will take place at Hotel Barra Sol 

Monday, October 23rd

15:00 – 18:00 Registration

Room Farol da Barra

18:30 – 19:00 Opening ceremony

Dirk SCHLIMM ‒ President of APMP
Marco PANZA ‒ Chair of the Scientific Committee
Abel LASSALLE CASANAVE ‒ Chair of the Organizing Committee
João Carlos SALLES ‒ President of the Universidade Federal da Bahia

19:00 – 20:30 Opening Lecture ‒ Chair: Dirk Schlimm

Mathematical impossibility in the social sciences. The history of 
Arrow’s impossibility theorem and its philosophical roots
Jesper LÜTZEN

Tuesday, October 24th

08:00 – 11:00 Workshops

Room 1 ‒ Chair: Luiz Márcio Farias

The impact of teaching mathematics on the development of 
mathematical practices
Speakers: Gert SCHUBRING / Jorge MOLINA / Tinne HOFF 
KJELDSEN
Discussants: Marcelo AMADEO / Carlos TOMEI

Room 2 ‒ Chair: Samuel Gomes da Silva

Beyond Truth and Consistency in Mathematical Practice
Speakers: Walter CARNIELLI / Abilio RODRIGUES / 
Marco RUFFINO
Discussants: Emiliano BOCCARDI / Guilherme CARDOSO / Henrique 
ANTUNES
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14:00 – 17:00 Talks

Room 1 – Chair: José Ferreirós

14:00 – 14:40
The method behind Poincaré’s conventions: structuralism and 
hypothetical-deductivism
Maria DE PAZ

14: 45 – 15:25
The Applicability of Mathematics as a Philosophical Problem. 
Mathematization as Exploration
Michael OTTE / Johannes LENHARD

15: 30 – 16:10
Material and social conditions for the development of 
mathematics
Mikkel Willum JOHANSEN / Morten MISFELD

16:15 – 17:00
Not in the Same River Twice: On the Applicability of 
Mathematics in Physics
Arezoo ISLAMI

Room 2 – Chair: Alberto Naibo

14:00 – 14:40
On Euclidian diagrams and mathematical rigor
Tamires DAL MAGRO

14:45 – 15:25

From Euclidean Geometry to knots and nets: does Manders’ 
account of Euclidean plane geometry offer a model for the 
analysis of contemporary mathematical proofs?
Brendan LARVOR

15:30 – 16:10
Carroll’s infinite regress, mathematical understanding, and the 
act of diagramming
John MUMMA

17:00 – 18:00  – Coffee Break

18: 00 – 19:30 Lecture ‒ Chair: Marco Panza

From counterexamples to examples, or when pathologies 
become the norm
Carmen MARTÍNEZ ADAME
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Wednesday, October 25th

09:00 – 11:00 Round Table

Room 1 ‒ Chair: Frank Sautter

Platonism in mathematical practice
Oswaldo CHATEAUBRIAND / Eduardo BARRIO / Marco PANZA

11:00 – 12:30 APMP General Assembly

14:00 – 17:00 Talks

Room 1 – Chair: Maria de Paz

14:00 – 14:40 Proofs without foundations
Roy WAGNER

14:45 – 15:25 Visual aspects of scientific models: the case of turbulence 
Irina STARIKOVA

15:30 – 16:10 Diagrams and formulas: on the contents of representations in 
mathematics 
David WASZEK

16:15 – 17:00 The role of notations in practices of 19th century logic
Dirk SCHLIMM

Room 2 – Chair: Eduardo Giovannini

14:00 – 14:40 Carl Snell ‘My Revered Teacher’: Education, Euclid and System 
in Frege and his Environment 
Jamie TAPPENDEN 

14:45 – 15:25 Are Points (Necessarily) Unextended? 
Philp EHRLICH

15:30 – 16:10 Logic and Proofs in Euclid’s Geometry 
Alberto NAIBO

16:15 – 17:00 Euclidean Geometry: Categoricity and the Choice of Logic 
John BALDWIN

20:00 – 22:00 Conference Dinner
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Thursday, October 26th

09:00 – 11:00 Round Table

Room 1 ‒ Chair: Wagner Sanz

Formal and informal proofs 
Luiz Carlos PEREIRA / Jessica CARTER / Max DICKMANN

14:00 – 17:00 Talks

Room 1 – Chair: Davide Crippa

14:00 – 14:40 From the comparison of ratios to the comparison of differences
João CORTESE

14:45 – 15:25 Constructing the Cycloid
Jonhatan ETTEL

15:30 – 16:10 The Germanic route from negative quantities to natural numbers 
Elías FUENTES GUILLÉN 

16:15 – 17:00 What Dedekind’s mathematical drafts tell us about the genesis 
of his lattice theory 
Emily HAFFNER

Room 2 – Chair: Marco Aurelio Oliveira

14:00 – 14:40 Nominalistic content behind the communication problem 
Matteo PLEBANI

14:45 – 15:25 Learning Mathematical Fictions
Pedro CARNÉ

15:30 – 16:10 Semantic information and the ampliative character of formal 
knowledge
Bruno R. MENDONÇA

16:15 – 17:00 Functional and Structural Abstraction. A contribution to 
concept formation in modern and contemporary mathematics
Bernd BULDT
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17:00 – 18:00  – Coffee Break

18:00 – 19:30 Lecture

Room 1 ‒ Chair: Gisele Secco

Manipulative imagination: from perception and action to mathematics
Valeria GIARDINO

Friday, October 27th

08:00 – 11:00 Workshops

Room 1 ‒ Chair: Jessica Carter

Varieties of visualization in Mathematics
Speakers: Silvia DE TOFFOLI / Danielle MACBETH / Javier LEGRIS 
Discussants: Gisele SECCO / Sandra VISOKOLSKIS / Frank SAUTTER

Room 2 ‒ Chair: Olival Freire Jr.

The theories of proportion from Euclid to Hilbert
Speakers: Davide CRIPPA / Vincent JULLIEN / Eduardo GIOVANNINI
Discussants: Jesper LÜTZEN / Luiz Felipe MIRANDA / André PORTO

11:30 – 13:00 Meeting of the APMP Directive Committee

14:00 – 15:30 Closing Lecture

Room 1 ‒ Chair: Abel Lassalle Casanave

Reducing the Real Numbers: Has the Continuum been tamed? 
José FERREIRóS
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APMP 2017

Abstracts
In alphabetical order

Zoe ASHTON
Simon Fraser University / USA
zashton@sfu.ca
The Normative Role of Audience in Mathematical Proof
While argumentation theory has been adopted in the study of mathematical 
proofs, much of the research has been focused away from the inclusion of 
audiences. This lack of focus on audiences stems from a claimed distinction 
between mathematics and arguments. In this paper, I argue that audiences 
play a normative role in the judgment of mathematical proofs. By clarifying 
Perelman and Olbrechts-Tyteca’s definition of demonstration it becomes 
clear that what they banned from their theory of argument was formal 
derivations, not mathematical proofs as they are practiced. One of the key 
concepts of Perelmanian argumentation is the ideal of the Universal Audience. 
In following recent work in argumentation theory, the Universal Audience 
to embodies standards of reasonableness seen in particular audiences. Part 
of the reason mathematical proof appears to be free of audiences is that 
they are actually arguments to the Universal Audience, so the standards of 
reasonableness seem obviously universal. This is the audience that works 
behind the scenes, influencing how the mathematician believes a theorem 
should be proved. This is clear in the proof development stages, when the 
mathematician argues with two instantiations of the Universal Audience – 
the mathematician himself and the single interlocutor. In the presentation 
stages, both the conception of the universal audience and the proof undergo 
judgment from particular audiences. These particular audiences point out 
unacceptable gaps in the proof, thereby identifying their particular standards 
of reasonableness. These newly learned standards are then incorporated into 
the mathematician’s conception of the Universal Audience. By identifying 
standards of reasonableness with standards of rigor in mathematical proof, 
we are able to better understand changing rigor. More specifically, it sheds 
light on the way proofs are treated in their time or field specific contexts. 
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John BALDWIN
University of Illinois at Chicago / USA
Euclidean Geometry: Categoricity and the Choice of Logic
Meadows [1] proposes three goals for Euclidean Geometry: Categoricity and 
the Choice of Logic: [a] to demonstrate that there is a unique structure which 
corresponds to some mathematical intuition or practice; ii) to demonstrate 
that a theory picks out a unique structure; iii) to classify different types 
of theory. We expand on his analysis in three ways. We first note that 
the very notion of categoricity depends on what should be (in our view) a 
prior notion of isomorphism but that this priority is not at all clear in the 
history or philosophical literature. Secondly, we argue there may be several 
specifications of what seems to be a single intuition that lead to different 
theories and that indeed different logics may be appropriate for formulating 
these different intuitions. And finally we argue that Lω1,ω-categoricity 
provides a much finer and mathematically meaningful classification for 
the third goal than 2nd order classification. For the first, note the usual 
model theorist’s notion of isomorphism presupposes a fixed vocabulary τ; 
each τ-structure is uniquely defined in naive set theory (as in Halmos) and is 
unique. Since Dedekind, mathematicians have studied the isomorphism type 
of such structures. But specifying in advance the vocabulary in which the 
isomorphism is considered (e.g. for Dedekind’s natural numbers as a single 
‘successor function) clarifies the act of ‘neglecting special character . . . retaining 
their indistinguishability . . . taking into account only the relations1. Here we 
will draw on [2], [3], [4], [5]. For the second point we present three different 
intuitions of ‘Euclidean geometry’ and present categorical axiomatizations of 
each; this shows that while categoricity might be a necessary condition for a 
successful axiomatization it is not sufficient. We call these three geometries: 
Euclidean, Cartesian, and Hilbertian. The first might more accurately be 
called constructible; it is the geometry of Euclidean constructions. The 
names are for convenience and historical accuracy is not asserted. But 
Descartes was leery of transcendentals – before the term was well-defined. 
Anachronistically and to save space we describe the geometries by describing 
in naive set theory the unique models.
Theorem 0.0.1. Each of the following is categorical in Lω1,ω. The first two are 
axiomatized by a single sentence; the third by a family of continuum many 
sentences.
1. Euclidean Geometry: geometry over the minimal Euclidean field E. 
2. Cartesian Geometry: geometry over the the real algebraic numbers2; (ℜalg, 
+, ×, 0, 1);
3. Hilbertian Geometry: geometry over the complete ordered field (ℜ, +, ×, 0, 1);
Fix the geometric vocabulary to include unary predicates for points and 
line, a binary incidence relation, and relations for betweenness, segment 
congruence and triangle congruence. These theories are easily axiomatized 
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by requiring the first order axioms of Hilbert in each case plus circle-circle 
intersection in the first.
For categoricity, in the first case specify by an Lω1,ω sentence the quantifier-
free diagram of the model, in the second require an Archimedean model 
of first order geometry over a real closed field, and in the third require all 
cuts in the rationals to be realized and that the field is Archimedean. These 
examples are extended by providing first order axioms adding π to 1) and 2) 
in [6]. 
Since the basic relations of each model are recursive, it is clear that there 
are 2nd order axiomatizations of the first two but ones that convincingly 
represent the minimality in 2nd order rather than sortal logic are harder to 
come by. These examples show the wide variety of categorical specifications 
of our first intuitions. As argued in [7], the ‘Dedekind’ completeness of 
Hilbert’s geometry was intended as a basis for analysis rather than an 
historically accurate recapitulation of Euclid or Descartes. For the third 
point, the advantages of the Lω1,ω-axiomatization are two-fold. First, they 
replace the blunderbus of realizing all cuts with the finer geometric structure 
of (e.g. for 2) asserting all curves (of odd degree) cut the x-axis. Secondly, the 
choice of logic provides a sharper notion of categoricity. The unselectivity of 
2nd order categoricity is argued in [8]. (Under V = L, all countable or Borel 
structures are 2nd order categorical and there are categorical structures of 
immense cardinality.) But Lω1,ω- categorical sentences have a unique minimal 
(no proper submodel) model and it must be countable. So ‘most’ countable 
structures are not Lω1,ω-categorical.

Notes:
1 §73, page 68 of [9]. 
2 Ralg denotes the real algebraic numbers; this is the maximal field without 
imaginaries or transcendentals.

References:
[1] Meadows, T. (2013). What can a categoricity theorem tell us? ℜeview of 
Symbolic Logic, 6:524–544. 
[2] Sieg, W.; Morris, ℜ. (2017). Dedekind’s structuralism: Creating concepts 
and deriving theorems. Logic, Philosophy of Mathematics, and their History: 
(on Morris website). 
[3] ℜeck, E. H. (2003). Dedekind’s structuralism: An interpretation and partial 
defense. Synthese, 137.
[4] Tait, W. (1996). Frege versus Cantor and Dedekind: On the concept of 
number. In Tait, W., editor, Frege, ℜussell, Wittgenstein: Essays in Early 
Analytic Philosophy (in honor of Leonard Linsky), pages 213–248. Open 
Court Press. 
[5] Wilson, M. (1992). The royal road to geometry. Nous, 26:149–180.
[6] Baldwin, J. T. (2016). Axiomatizing changing conceptions of the geometric 
continuum I. II: Euclid and Hilbert. 55 pages, preprint.
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[7] Baldwin, J. (2017). Model Theory and the Philosophy of mathematical 
practice: Formalization without Foundationalism. Cambridge University 
Press. to appear.
[8] Baldwin, J. (2014). Completeness and categoricity (in power): Formalization 
without foundationalism. Bulletin of Symbolic Logic, 20:39–79. 
[9] Dedekind, ℜ. (1963). Essays on the Theory of Numbers. Dover. first 
published by Open Court publications 1901: first German edition 1888.

Eduardo BARRIO
IIF-Conicet – Universidad de Buenos Aires / Argentina
eabarrio@gmail.com 
Gödel Sentences, Realism and Mathematical Practice
The main goal of Hilbert’s program was to formalize all mathematical 
systems and then prove consistency using only finitist means. As is 
known, nevertheless, Gödel’s incompleteness theorems have significant 
consequences for Hilbert’s elaborate formalism. The theorems seem to show 
that the necessary metamathematical justification could not be carried out. 
In particular, Gödel’s proof of the Incompleteness Theorems show (i) that 
Gödel’s sentences say of themselves that they are unprovable; and (ii) that 
they are true provided the theory in question is consistent. How could Gödel’s 
sentences be true if they are not provable?  What importance could these 
truths have for the mathematical practice, if they transcend our capacities 
of proof?  In this talk, I argue - perhaps against Gödel himself- that these 
results do not imply any ontological point of view. In particular, I reject that 
these results commit us to some form of mathematical realism (the view that 
at least some mathematical entities exist objectively, independent of the 
minds, conventions, and languages of mathematicians).

Bernd BULDT
Indiana University – Pardue / USA
buldtb@ipfw.edu
Functional and Structural Abstraction. A contribution to concept formation in 
modern and contemporary mathematics
The traditional approach to concept formation and definition via abstraction 
presupposes an Aristotelian ontology and its corresponding hierarchy 
according to which “definitio fit per genus proximum et differentiam 
specificam.” According to this approach, abstraction is tantamount to 
removing properties and making the corresponding concept less rich; the 
more abstract a concept is, the fewer content it has. This traditional approach 
to abstraction and definition does not, however, provide an adequate model 
for concept formation and definition in mathematics. Actually, it is quite 
misleading, for a number of reasons. What we need instead of the traditional 
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picture is an account of concept formation and definition that is (1) true 
to mathematical practice, (2) true to the mathematical experience, and (3) 
is compatible with insights from cognitive science. We take this to mean 
in particular that any such account should be informed by historical case 
studies (to satisfy (1)); that it will result in abstract concepts being oftentimes 
richer, not poorer in content (in order to meet (2)); requirement (3) needs 
to be in place for keeping the analysis scientifically sound. In light of the 
requirements (1)–(3), the paper will identify and discuss various techniques 
for arriving at mathematically useful abstractions and for defining abstract 
concepts. While these techniques include familiar examples—for instance, 
impredicative definitions (e.g., the way Dedekind’s characterization of N 
or ℜ got subsequently emulated) or implicit definitions (basically, modern 
post-Hilbertian axiomatics)—greater emphasis will be placed on ways to 
arrive at new, more abstract concepts that are less familiar from recent 
discussions: parametric abstraction (e.g., the way Ax2 + 2Bxy + Cy2 + Dx + Ey + F 
= 0 characterizes all conic sections), algebraization of intuition (e.g., intuitive 
continuity of functions vs. its topological reformulation), and abstraction by 
embedding in richer theories. (A selection will be made based on the speaking 
time.) The paper takes the discussion in [1] as its starting point.
References:
[1] Buldt, Bernd; Schlimm, Dirk. “Loss of vision: How mathematics turned 
blind while it learned to see more clearly,” in: Philosophy of Mathematics: 
Sociological Aspects and Mathematical Practice, ed. by Benedikt Löwe and 
Thomas Müller, London: College Publications (2010), pp. 87–106.

Pedro CARNÉ
PUC – Rio / Brazil
pedrohpcarne@gmail.com
Learning Mathematical Fictions
In this talk, I intend to analyze Azzouni’s notion of mathematical fictions 
advanced by him on his homonymous paper. My main goal is to derive 
from this notion some claims regarding mathematical practice. More 
specifically, I shall address Azzouni’s emphasis on deductive tractability 
of mathematics as a property closely connected with the allegation that 
mathematical terms do not refer in order to understand how it would be 
possible to learn mathematics. That is, according to Azzouni’s theory, what 
do we learn when we learn mathematics? For unpacking this question, it 
is fundamental to grasp in which way Azzouni deals with three different 
and complementary claims: (i) that a statement that is true (or false) about 
something is about “some one thing;” (ii) that mathematics is empirically 
valuable; and (iii) that deductive reasoning seems to yield necessary truths. 
By grasping Azzouni’s arguments targeted at each one of these claims it is 
possible to look into his deflationary nominalism, according to which “it is 
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perfectly consistent to insist that mathematical theories are indispensable 
to science, to assert that mathematical and scientific theories are true, 
and to deny that mathematical objects exist.” (Bueno 2013) The idea that 
fictions are only connected with entertainment is challenged by Azzouni 
throughout his paper, and by the end of it he maintains that the philosophical 
puzzles raised by fictions are indeed very deep, given that their internal 
mechanisms are related to intricate issues, such as how reasoning actually 
works and how our cognitive faculties enable us to engage in imaginative 
thinking (and talking).

Walter CARNIELLI
UNICAMP / Brazil
walter.carnielli@cle.unicamp.br
Contradictory and inconsistent sets, Zermelian set theory, and forcing
Since the discovery of the paradoxes, research in contemporary set theory 
has focused on attempts to rescue Cantor-Frege’s naive theory from triviality. 
One way to escape such deductive trivialism is to weaken the underlying 
logic and to allow for contradictory sets, possibly taking profit of their 
exotic character. This move would reconcile set theory with Cantor’s liberal 
approach: although Cantor never accepted a contradiction as a meaningful 
mathematical tool, he tolerated the existence of inconsistent totalities and 
even reasoned with them. What we call Zermelian paraconsistent set theories in 
[4] are systems, as the one presented in [1], that accept the axiomatization that 
Zermelo proposed in his 1908 paper for the development of set theory, but 
using an underlying paraconsistent logic. Defenders of this line are B. Löwe, 
S. Tarafder, W. A. Carnielli and M. E. Coniglio among others. An alternative 
position is represented by the Cantorian paraconsistent set theories, which aims 
at formalizing set theory just by means of Extensionality and unrestricted 
Comprehension. Typical proponents of this line are ℜ. ℜoutley, G.Priest, 
ℜ. Brady and Z. Weber. George Cantor’s seminal intuitions on sets can be 
vindicated in the light of paraconsistency, specially by employing the logics 
of formal inconsistency. The Zermelian approach in [1] (see also [2], chapter 8) 
intends to propose an axiomatic system as close as possible to ZFC, but where 
the logical connectives receive a paraconsistent interpretation. The primary 
intuition is to assume that not only theories can be taken to be consistent or 
inconsistent, but also that sentences and sets themselves can be thought to be 
consistent or inconsistent, expressed by a new operator ◦. The basis for new 
paraconsistent set-theories such as ZFmbc and ZFCil are established from 
this perspective, and their nontriviality is proved provided that ZF itself is 
consistent. This shows that the new operator ◦, which permits one to separate 
contradictions from inconsistency and avoids deductive triviality, is a natural 
and effective tool for expressing contradictory objects in mathematical 
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practice, in quite a similar fashion to the way complex numbers behave. A 
further step is then the formidable question of proving the independence 
of CH in a paraconsistent setting, a task that claims for methods for 
constructing models of paraconsistent set theory, as in [3]. In order to provide 
the consistency (or the independence) of CH with respect to a paraconsistent 
set theory, a notion of forcing and inner model with a paraconsistent nature 
are needed, a problem discussed (and partially solved) in [4]. 

References:
[1] Carnielli, W. A.; Coniglio, M. E. Paraconsistent set theory by predicating 
on consistency. Journal of Logic and Computation, 26(1):97–116, 2016.
[2] Carnielli, W. A.; Coniglio, M. E. Paraconsistent Logic: Consistency, 
Contradiction and Negation. Series: Logic, Epistemology, and the Unity of 
Science Springer, 2016 http://www.springer.com/la/book/9783319332031 
[3] Löwe, B.; Tarafder, S. Generalized algebra-valued models of set theory. 
ℜeview of Symbolic Logic, 8(1):192–205, 2015 
[4] Carnielli, W. A.; Coniglio, M. E.; Venturi, G. Paraconsistent set theory and 
forcing Manuscript.

Jessica CARTER
University of Southern Denmark / Denmark
jessica@imada.sdu.dk
Cartesian Geometry and Arithmetic
My presentation will focus on proofs in contemporary mathematics and so 
informal proofs. Moreover I will consider the use of diagrams in such proofs. 
By presenting some of the roles diagrams play in proofs my hope is to stimulate 
a discussion about formal versus informal proofs in mathematics. In the 
literature one sometimes find statements claiming that diagrams should play 
no justificatory role in mathematical proofs referring, for example, to quotes 
of Hilbert and Pasch from the beginning of the 20th century. Considering 
proofs in contemporary mathematics journals, however, one may find a 
variety of diagrams referred to. In the first part of the talk I will show some 
examples of diagrams employed in analysis and thus documenting this claim. 
Second I will consider some of the roles these diagrams play. In this part I 
will mainly focus on a case study from the area of C*-algebras where certain 
diagrams, so called directed graphs, are used to represent and generate these 
algebras. In addition to being much simpler objects to study, the advantage 
of these graphs is that it is possible to define certain invariants of the C*-
algebras (called K-groups) directly from the graphs – and that the definition 
of these invariants is extremely simple. In this sense I will explain that these 
graphs act as mediating object between the C*-algebras and their invariants. 
Furthermore I will argue that this function is made possible because these 
graphs ‒ or diagrams ‒ can be taken to represent in two different ways. In 
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other words they represent metaphorically, that is, because of some given 
rules. ℜeading a particular graph according to one set of rules one obtain the 
relations generating a particular C*-algebra. ℜeading it following a different 
set of definitions one obtains the invariants. Another important feature of the 
graphs is that they are objects that can be manipulated and so experimented 
on. Adding vertices or edges to a graph (in a controlled way) gives rise to 
different algebras and their corresponding invariants. In this way it is 
possible, for example, if given a certain set of invariants to re-construct the 
particular graph and so the C*-algebra that has these invariants. In the last 
part of the talk I will indicate that this role of a representation, that is, that 
it can be manipulated on and that manipulations respect certain relations, is 
not exclusive for diagrams but occurs also in mathematical proofs in general 
and that this function is (in)valuable in mathematics.

Oswaldo CHATEAUBRIAND
PUC-Rio / Brazil
ochateaubriand@gmail.com
The ontology of mathematical practice revisited
As Bernays maintained in his famous 1935 article “On Platonism in 
Mathematics”, in mathematical practice objects, functions, relations, 
properties, structures, etc. are treated as entities that exist independently 
of our discourse and of our constructions. Bernays maintains that this form 
of Platonism is essentially a manner of speaking, which does not involve 
a commitment to a strict form of Platonism. In a talk at the 2012 Conesul 
meeting “The ontology of mathematical practice” (published in Notae 
Philosophicae Scientiae Formalis vol. 1, n. 1) I defended Bernays’ position 
and proposed a more systematic formulation for this form of Platonism, 
combining it with ideas of Frege and of Gödel. In the round table discussion, 
I intend to elaborate this theme.

João CORTESE 
Université de Paris 7 / France – University of São Paulo / Brazil
joaocortese@gmail.com
From the comparison of ratios to the comparison of differences
Proportion theory for magnitudes appears in its classical form in book V 
of Euclid’s Elements. It presents conditions about what kind of relations 
between two magnitudes can constitute a ratio (logos) (by the Archimedean 
Property or Eudoxus’ Axiom, given in definition 4). Besides, four magnitudes 
are said to be proportional if they are in the same ratio, the first to the 
second and the third to the forth (definitions 5 and 6). Besides, according to 
definition 7 a ratio can be bigger than another, constituting another aspect of 
the comparison of ratios. In Seventeenth-century mathematics, proportion 
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theory was well known and widely used. At the same time, new theories were 
been developed at this time, and new questions about the comparability of 
magnitudes appeared – in particular, with the methods of indivisibles. One 
of the biggest discussions brought by indivisibles was whether they were 
homogeneous or heterogeneous to their corresponding magnitudes – a 
problem directly related to the existence of ratios. Besides, the comparability 
of ratios was of greatest importance for demonstrations in which an infinite 
(or indefinite) number of indivisibles are considered: would like to discuss an 
important aspect of Blaise Pascal’s treatment of differences (errors) between 
sums of indivisibles and the corresponding magnitudes, developed in his 
Lettres de A. Dettonville. If on the one hand Pascal himself declares that 
his method is equivalent to the “Method of the Ancients”, on the other hand 
he makes an important contribution as he takes the differences themselves 
as elements that can be in some way quantified and compared. This new 
treatment of error by Pascal allows a comparison between two kinds of 
“indivisibles”: the small portions of the magnitude considered, and the 
differences. These comparisons appear in a kind of proof technique that shall 
be considered in the light of the delta-epsilon modern definition of limit, 
developed by Cauchy, Bolzano and Weierstrass. Even if Breger (2008) claims 
that “the connection between infinitesimals and what we now call epsilontics 
was obvious enough for 17th-century mathematicians”, a precise analysis of 
Pascal’s contribution and is specificity is necessary, since Whiteside (1961) 
recognised the originality of Pascal’s usage of differences, but did not give an 
exhaustive philosophical analysis of it.

Davide CRIPPA
Czech Academy of Science / Czech ℜepublic
davide.crippa@gmail.com
The Foundational Role of the Theory of Proportions in 17th Century:                    
Viète and Descartes
One of the most interesting aspects of the history of the theory of proportion 
in 17th century is its intimate relationship with symbolic algebra, namely 
with the study of equations. This relation regarded both arithmetic and 
geometry. In this talk I will discuss the role played by Euclid’s theory of 
proportion in two outstanding geometrical works, and particularly in Viète’s 
Introduction to the Analytic Art (1591) and in Descartes’ Geometry (1637). My 
thesis is the following: Viète’s and Descartes’ works can be interpreted as 
two efforts to establish algebra, which had grown up as a cluster of practices, 
as a science by grounding its symbolic manipulation on Euclid’s geometry. 
Euclid’s theory of proportions played a crucial role in these foundational 
tasks. I do not claim that this was the main goal of Viète’s and Descartes’ 
mathematical programmes, but that it was a relevant consequence for both 
of them. The ways and the extent to which this project succeeded will be 
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discussed in this talk. Attempts to employ geometrical considerations to 
verify algorithms for the solution of algebraic equations up to the 3rd degree 
were common among ℜenaissance algebraists (Tartaglia, Cardano, Bombelli). 
Geometry was to be preferred to arithmetic because of its greater generality. 
Indeed by “geometrical considerations” I refer to the possibility of grounding 
every algebraic manipulation into a corresponding geometric construction, 
whose correctness is ultimately proven on the basis of Euclid’s Elements. The 
correspondence between algebra and geometry was based on the so-called 
principle of homogeneity, namely on the correspondence which associates x 
to a segment, x2 to a square and x3 to a cube. This correspondence was broken 
for equations of degree higher than the third, due to the lack of fourth (and 
higher) dimensional geometric objects. However, several answers were found 
between the second half of 16th and the first half of 17th century in order to 
overcome this difficulty and ground manipulations with higher algebraic 
quantities on geometry. Viète’s idea, inspired to Diophantus, consists in basing 
his symbolic algebra, or logistica speciosa, on Euclid’s theory of proportions. If 
this programme were feasible, then any algebraic equation of any degree could 
be well-grounded into Euclid’s Elements, which stood as the model of rigour. 
However, this possibility could not be taken for granted, and one of the main 
tasks of Viète’s inquiry was indeed the study of how algebraic equations could 
be associated to proportions (De recognitione aequationum, 1615). This seems to 
have been for Viète a purely theoretical, or foundational task, independent from 
pratical applications of symbolic algebra. Euclid’s theory of proportion also 
plays a central role in Descartes’ reflection on mathematics in the Géométrie 
(1637), but in an utterly different way with respect to Viète. In particular, the 
theory of proportion has an operational function in the Geometry, because 
it grounds a geometrical calculus or an “algebra of segments”. By virtue of 
this role, the connection between algebra and the theory of proportions is 
crucially different in Viète with respect to in Descartes: while one of the main 
tasks which led the inquiry of the former was to interpret equations in terms 
of proportions, for the latter equations are from the start, by virtue of the 
geometric interpretation of arithmetic operations, compact notations for 
proportions between segments. These differences would be stressed by the 
first commentators of the Geometry, who saw Descartes’ geometrical calculus 
also, but not only, as a way to ground symbolic algebra on the solid basis of 
Euclidean geometry in a more convenient and consistent way than Viète’s.

Tamires DAL MAGRO
UNICAMP / Brazil
tamiresdma@gmail.com
On Euclidean Diagrams and Mathematical Rigor 
In this work we investigate the consequences of defending the legitimacy of 
diagram use in Euclidean proofs (Manders) i.e., of endorsing the thesis that 



25

diagrams can be used in proper demonstrations without compromising their 
rigor. Thus, we are concerned with a conception of (mathematical) proof that is 
broad enough to encompass diagrammatical information. Such a conception 
stands in shark contrast to the conception of proof put forward in the late 
19th and early 20th centuries, according to which proofs are, by definition, 
sequences of sentences such that their demonstratives steps are either axioms 
or follow from them by mean of inference rules. That conception quickly 
became the orthodoxy in metamathematical thinking and the epistemic 
properties of diagrams fell into discredit. We intend to assess a proposal under 
development by Ferreirós and also, independently, by Lassale Casanave & 
Panza, according to which Elements, as much as any other robust mathematical 
text, should be understood as a mathematical treatise, i.e. not only as a 
collection of solved problems and demonstrated theorems, but also as a work 
exposing a theory and a manner of doing mathematics inside that theory. In 
another words, the authors defend that an adequate analysis of mathematics 
should take into account the different mathematical practices that exist (or 
have existed), their symbolic frameworks (be it formula-, diagram-based 
etc.) as well as the particular objectives defining the distinct mathematical 
communities’ employment of these frameworks. From this perspective, both 
Euclid’s plane geometry and its formal-axiomatic counterparts earn the merit 
of being considered full-blown mathematical theories in their own right, 
and we become able to rebuke the claim that the latter is a perfection of the 
former and the claim that “Hilbert ‘perfected’ Euclid’s axiomatization”. On 
the basis of those considerations, we explore the idea that a conception of 
mathematical demonstration or proof should be extended so as to be sensitive 
to the distinct symbolic frameworks and manner of doing mathematics that 
constitute distinct mathematical practices. 

Maria DE PAZ
Universidad de Sevilla / Spain
maria.depaz@hotmail.com
The double origin of Poincaré conventionalism: methodological structuralism 
and hypothetical-deductive method
The origins of Poincaré’s conventionalism have always been situated in 
problems about the status of certain scientific principles caused by the 
development of new scientific theories. Thus, it is typically a philosophical 
position emerged from scientific practice. For example, regarding geometrical 
conventionalism, it was the existence and consistency of nonEuclidean 
geometries what prompted the development of a philosophical position that 
could account for the status of the axioms of geometry without engaging 
in a discussion about their truth. Similarly, conventionalism in physics and 
mechanics was provoked by the discussion of the status of its fundamental 
principles, starting with the Newtonian laws of motion. Conventions 
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have been the object of several contemporary philosophical debates, e. g. 
concerning their agreement with modern science (for example, with general 
relativity), their rigidity, flexibility, or constitutivity in scientific theories, 
their relation to realistic or antirealistic positions, and so on. Here I would 
like to consider conventionalism as a philosophical position originated from 
two specific methodologies proper to modern mathematics and the modern 
natural sciences: methodological structuralism and hypothetical-deductive 
method – thus, as a philosophical position which emerged from a way (or 
rather, two ways) of doing science. What is more important, I will try to 
show that these two methods are connected in both disciplines, geometry 
and physics. First, Poincaré’s claim that geometry is the study of the formal 
properties of a certain continuous group is typically a structuralist claim. 
And we will show that geometrical conventionalism could be understood 
as a consequence of this way of doing and understanding geometry. Second, 
Poincaré’s defense of a ‘physics of principles’ where the conventional status of 
the principles is made explicit can be linked to a movement of abstraction in 
19th century physics that is similar to the conceptual approach in mathematics 
(characteristic of the structuralist position). Third, Poincaré’s discussion of 
the status of geometrical axioms and his reading of them as conventions is 
related to ℜiemann’s understanding of geometrical axioms as hypotheses. The 
use of the term hypothesis implies the non-certain (hypothetical) character 
of the axioms, as well as the possibility of choosing different sets of them. 
Fourth, the treatment of physical principles as conventions also stresses their 
hypothetical character, since they cannot be established as true or false and 
alternatives are possible. Also, hypothetical-deductive method emerges by the 
mid-19th century and is visible in ℜiemann’s manuscripts on mechanics and 
physics. In fact, the availability of alternatives and the possibility of choosing 
is what connect conventions and hypotheses. The words ‘convention’ and 
‘hypothesis’ have to do with methodological flexibility, that is, with the idea 
of having different conceptual possibilities, and the conceptual approach is 
typically represented by the structuralist position. 

Silvia DE TOFFOLI
Stanford University / USA
silviadt@stanford.edu
What is a Mathematical Diagram?
In the literature on visualization in mathematics, terms such as diagram and 
graphic representation have been used in different and even contradictory 
ways. In this talk, I propose a new working vocabulary to disambiguate these 
and other related terms, and distinguish different types of notations and 
visualizations in mathematics. My focus will be on external representations: 
I will not consider mental visualizations. I will first define different types 
of representations and then see how they combine forming systems of 
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representations (i.e. languages or mathematical notations). I will start by 
considering figures in mathematics, that is, two-dimensional displays of 
mathematical content exploiting in a non-trivial way the space of the page, 
i.e. not only constituted by symbols in sequence. Of course, also symbols 
in sequence exploit two-dimensionality, but they do so trivially, in at least 
two ways: the symbols themselves are two-dimensional and sequences are 
divided into different lines. I will distinguish between two types of figures: 
illustrations and diagrams. On the one hand, illustrations are figures that 
represent in a non-constrained way mathematical content. Examples of 
illustrations are computer-generated images of topological manifolds and 
illustrations in analysis (e.g. the one of the Intermediate Value Theorem.) 
On the other hand, diagrams are more constrained representations. They are 
two-dimensional figures that present rigid constraints on their shape and 
interpretations and that allow for a specific type of mathematical reasoning 
on them. A mathematical diagram presents tight constraint on: i) its formal 
properties, ii) its interpretations, and iii) its possible manipulations.  Thanks 
to these constraints, mathematical diagrams, like mathematical one-
dimensional representations, do not only represent content statically, but 
can be manipulated in specific ways to support mathematical inferences. 
In this sense, they are epistemic tools that allow mathematicians to reason. 
According to the proposed definition, mathematical diagrams are contrasted 
both to linear, or one-dimensional, mathematical representations, and 
to illustrations, that is, two-dimensional unconstrained representations. 
Note that the boundaries between these categories can be fuzzy and there 
are hybrid cases. The use of diagrams in mathematics involves spatial 
thinking, but not necessarily geometric thinking; the reasoning could be 
entirely combinatorial, as in the case of diagrams in graph theory. In order 
to isolate the subcategory of diagrams which allow for geometric (or better, 
topological) type of reasoning, I will define graphic representations. Diagrams 
that are graphic exploit topological notions of the plane in which they are 
inscribed, such as the Jordan curve theorem. Examples are knot diagrams 
and Euclidean diagrams, while example of diagrams that are not graphic are 
oriented graphs and commutative diagrams. Proposing a working taxonomy 
for visualization in mathematics, I aim at shedding light on the nature of 
different kinds of mathematical diagrams and on the basis of the possibility 
of using them as actual epistemic tools to reason in mathematics.

Max DICKMANN
Universités Paris 6 et 7 / France
dickmann@math.univ-paris-diderot.fr
Formal vs informal proofs in mathematics
My presentation will consist on a reflection on informal proofs, as done by 
working mathematicians, versus the standard of rigor required in formal 
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mathematics, and the implications of the gap between them. To some extent 
it will be based on personal experience.
The «  no man’s land  » between formal and informal proofs has delicate 
implications for (at least):
(1) The transmission of mathematical knowledge at both the levels of 
teaching and of creation.
(2) The writing of mathematical texts, both books and research papers.
In fact, the chasm deepens as the mathematical level increases.
At the time of creation («  doing  » maths) a decisive component of a 
(necessarily informal) new proof is intuition. This, in turn, depends on 
prior knowledge (and/or habit) built along a formative period, or a life-long 
mathematical practice or, more prosaically, upon taste and will. Taking into 
account that, as a result of sheer accumulation, any single mathematician is 
familiar with only an infinitesimal fraction of the corpus of the mathematics 
of her/his time, the difficulty in appreciation of informality --on which much 
of the understanding of mathematics rests-- becomes a stumbling block for 
mathematical communication even among colleagues of the same level and 
practising closely related disciplines. Just a pedestrian example: anyone 
who has written research papers has not failed to have the feeling that the 
reviewer of his paper « has not really understood it ». This is not always due 
to the referee’s ill intentions, but frequently to a difference of appreciation 
of the value, and the difficulties involved in the creation of the piece of 
mathematics under examination, due to a difference in formation --hence of 
perception and focus-- between author and reviewer. Differences of this type 
are subtle, but permeate the trade.

Philip EHRLICH
Ohio University – Athens / USA
ehrlich@ohio.edu
Are Points (Necessarily) Unextended? 
Ever since Euclid defined a point as “that which has no part” it has been 
widely assumed that points are necessarily unextended. It has also been 
assumed that, analytically speaking, this is equivalent to saying that points 
or, more properly speaking, degenerate segments—i.e. segments containing 
a single point—have length zero. In our talk we will challenge these 
assumptions. We will argue that neither degenerate segments having null 
lengths nor points satisfying the axioms of Euclidean geometry implies that 
points lack extension. To make our case, we will provide models of ordinary 
Euclidean geometry where the points are extended despite the fact that the 
corresponding degenerate segments have null lengths, as is required by the 
geometric axioms. The first model will be used to illustrate the fact that 
points can be quite large—indeed, as large as all of Newtonian space—and 
the other models will be used to draw attention to other philosophically 
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pregnant mathematical facts that have heretofore been little appreciated, 
including some regarding the representation of physical space. Among 
the mathematico-philosophical conclusions that will ensue from the above 
talk are the following three. (i) Whereas the notions of length, area and 
volume measure were introduced to quantify our pre- analytic notions of 
1-dimensional, 2-dimensional and 3-dimensional spatial extension, the 
relation between the standard geometrical notions and the pre-analytic, 
metageometric/metaphysical notions are not quite what has been assumed. 
Indeed, what our models illustrate is that, it is merely the infinitesimalness 
of degenerate segments relative to their non-degenerate counterparts, rather 
than the absence of extension of points, that is implied both by the axioms of 
geometry and these segments null lengths. (ii) As (i) suggests, the real number 
zero functions quite differently as a cardinal number than as a measure 
number in the system of reals. So, for example, whereas a set containing 
zero members has no member at all, an event having probability zero may 
very well transpire, and perhaps more surprisingly still, a segment having 
length zero may contain a point encompassing all of Newtonian space. (iii) 
Physicists and philosophers alike need to be more cautious in the claims they 
often make about how empirical data determines the geometrical structure 
of space. Indeed, without additional geometrical assumptions, which their 
writings typically show no cognizance of, the evidence that is often appealed 
to is compatible with an array of distinct geometrical spaces. For example, 
as three of our models collectively demonstrate, even if one could have good 
experimental evidence that the sum of the interior angles of some (any) 
triangle in the plane is 180°, this would be entirely compatible with (a) an 
Archimedean Euclidean space, (b) a non-Archimedean Euclidean space, (c) a 
nonArchimedean hyperbolic space, (d) a non-Archimedean elliptic space, (e) 
a nonArchimedean semi-hyperbolic space that is not hyperbolic, (f) a semi-
elliptic space. We believe this has interesting implications for traditional 
philosophical disputes regarding the epistemology of geometry including 
the classical dispute between empiricist and conventionalist philosophies of 
geometry. We will conclude our talk by drawing attention to the latter.

Peter EPSTEIN
University of California – Berkeley / USA
pepstein@berkeley.edu
A Priori Concepts in Euclidean Proof
Famously, Euclid’s proof of Proposition 1.1. in the Elements is taken to 
contain a “gap”: nothing in Euclid’s axioms guarantees the existence of 
the intersection point of the two circles he constructs in the course of the 
proof, so the proof is not (according to the standard criticism) valid. If we 
take Euclidean geometry to be a system of deductive logic, this gap requires 
plugging with an explicit formal definition of continuity – a definition that 
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was worked out only in the nineteenth century, over two thousand years after 
Euclid’s time. And yet, working without any such formal definition, Euclid 
produced only correct proofs: all of his theorems are provable in the suitably 
“completed” systems of Hilbert and Tarski. This suggests that Euclid was 
not merely working within an incomplete system of logical deduction (where 
his ability to produce only correct proofs would seem quite miraculous), 
but rather was engaged in an entirely different kind of practice – a form of 
specifically geometrical reasoning, in which the content of concepts like line 
and circle, not just the form of the axioms in which those concepts feature, 
plays a crucial role. In this paper, I argue that the concepts in question—the 
concepts whose contents fill the “gaps” in the formal structure of Euclid’s 
proofs—cannot plausibly be taken to be empirical. For the proof of Elements 
1.1. turns on the distinction between genuine continuity and mere denseness: 
the proof fails, for instance, if the circles are taken to be constructed in the 
merely-dense rational plane.1 And the distinction in question—the distinction 
between a construction in the continuous real plane, where the circles do 
indeed intersect, and a construction in the rational plane, where the dense 
(but not continuous) circles fail to intersect—is not something that could 
ever be derived from experience. The two versions of the construction would 
be visually identically, no matter how carefully, or at what magnification, 
the circles were viewed; so the needed distinction cannot be an experiential 
one. Building off of this point, I critically assess three attempts—due to 
Strawson, Manders, and Giaquinto—to analyze Euclidean proof as deriving 
from visual reasoning. In order to assess these accounts, I propose a criterion 
for deciding whether a given mathematical concept is visually derivable, 
based on the idea that we can utilize a kind of “limit procedure” to extract 
such concepts from experience. Using this criterion, I show that a concept 
of denseness is, in an important sense, derivable from experience; but that 
the further distinction between mere denseness and genuine continuity—
the distinction needed to ground Euclid’s proofs—is not. Thus, I argue, in 
order to account for the success of Euclid’s system, we must acknowledge the 
existence of a special form of a priori geometrical reasoning at work in the 
practice of Euclidean proof – a kind of a priori thought distinct from purely 
formal, deductive reasoning, which utilizes a primitive set of contentful, 
non-visual spatial concepts.
1. See: Friedman, Michael. Kant and the Exact Sciences (Chapter 1). 
Cambridge: Harvard University Press, 1992. Strictly speaking, the proof of 
Elements 1.1. does not require the full continuity of the real plane. All the 
proofs found in Euclid’s Elements can be performed assuming only a plane 
based on the so-called “Euclidean extension” of the rationals. Such a plane 
contains curves that are not continuous, but it will suffice for all of Euclid’s 
existence claims about points. The important point, though, is that there are 
some dense-but-not-continuous curves—those of the rational plane—that 
would fail to intersect as assumed in Euclid 1.1.
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Constructing the Cycloid
The seventeenth century marked the introduction of a host of new curves 
into planar geometry. Of these the cycloid stands among the most famous 
and most widely studied. It also lies at the center of a number of philosophical 
and methodological debates. First, it is not definable by a finite equation in 
rectangular coordinates, and hence according to the criterion advanced by 
Descartes, is ``mechanical’’ rather than ``geometrical’’, and not subject to 
exact knowledge. Second, it was proposed by father Mersenne as a test case 
which could display the power of the method of indivisibles, a suggestion 
carried out notably by ℜoberval and Pascal, and hence the curve is also 
bound up with questions about the power, fruitfulness and certainty of the 
method, itself beset by controversy. Finally, it figured in important physical 
and technological applications, most notably in Huygens’ construction of 
the pendulum clock, where metal plates bent into the shape of the cycloid 
restrict the pendulum cord, creating a simple harmonic oscillator. The 
means by which the construction of the curve is effected differ markedly 
from case to case. The curve is most straightforwardly described as that 
generated by a point on a circle rolling along a straight line so that it makes 
one revolution in the time it traverses a lengthy equal to its circumference. 
In practice descriptions of this form are sometimes supplemented by 
alternative specifications, as in ℜoberval’s resolution of the defining 
motion into indivisible elements. In other cases, entirely different modes of 
construction are proposed, as in Huygens use of a pointwise approximation. 
We examine a number of constructions of the curve in the works of ℜoberval, 
Pascal, Huygens, Newton and others, and note that they support alternative 
representations, each of which captures some virtues at the sacrifice of 
others, where these virtues include exactness, conciseness of demonstration, 
and applicability in calculation and mechanical construction. 

José FERREIRÓS
Universidad de Sevilla / Spain
josef@us.es
Structuralism in mathematics: a conceptualist approach
In this talk I shall discuss the approach to structuralism that has been 
proposed in recent years by S. Feferman, which he called ‘conceptual 
structuralism’, in connection with my own conceptualistic epistemology. 
Feferman’s contrasts with other forms of structuralism, such as Shapiro’s 
ante rem, for its avowedly non-realistic stance. Yet a discussion of this 
topic shall lead us to formulate a form of lightweight realism that avoids 
the pitfalls of more extreme standpoints. In this light, I shall argue that the 
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crucial question is not the metaphysics of mathematical objects, but the 
question of objectivity of mathematical knowledge -- and here again I agree 
with Feferman. The talk will conclude with a review of my arguments for 
objectivity, presented in a recent book (2016), and some finishing remarks.

Elías FUENTES GUILLÉN
Universidad Autônoma del Estado de México / México
eliasfg@usal.es
The Germanic route from negative quantities to natural numbers
From Kästner’s designation of the arithmetic of –positive– whole numbers 
as natürliche Arithmetik (Kästner, 1758) to Bolzano’s commentary on those 
numbers as der sogenannten natürlichen (Bolzano, 1851) almost a century 
passed, during which a change in the notions of number and quantity took 
place among Germanic mathematicians. As evidenced by the fact that while 
in the entry “Nombre” in the Encyclopédie it was stated that –positive– 
whole numbers were “also known as natural numbers” (Encyclopédie, 1765), 
in the entry “Zahl” in Klügel’s Mathematisches Wörterbuch that alternative 
appellation was not employed (Klügel et al., 1831), cultural difference was 
important in the emergence of the notion of natural numbers. My talk 
will focus on procedural and conceptual changes in the works of the main 
Germanic mathematical authors of the second half of the 18th century that 
show such emergence. For them, on the one hand, mathematics was the 
science of quantity, and “quantity”, if taken rigorously, could be applied to 0; 
this explains their procedures to introduce infinitely small quantities within 
the framework of analysis and their reluctance towards these quantities 
as developed by Euler and others. On the other hand, for them arithmetic 
considered quantity in terms of numbers, and “numbers”, in the strict sense 
of the idea, were only the –positive– whole numbers, from which proper 
and improper –fractions of– numbers could be formed; this explains why as 
negative numbers were gradually accepted it became less unusual to use the 
denomination of “natural numbers” to refer to those whose positivity only 
arose once the others were introduced. I will defend that: a) The emergence of 
the notion of natural numbers among those mathematicians, as well as their 
insistence on “negatively expressed quantities” as the proper designation of 
the so-called negative quantities, wich in turn could be considered numerically 
and thus give rise to negative numbers, highlight the exisiting Germanic 
reluctance towards the status as numbers of the latter. b) This was intertwined 
with the Germanic tensión withing the framework of analysis to incorporate 
some of the new “foreign” developments but introduced the “true and correct” 
infinitely large quantites ( = ∞) and at the same time discarded the infinitely 
small quantities ( = 0) for not being quantities at all. c) The involvement of 
those authors in these processes shows that their works cannot even in their 
beginnings be considered as “more popular and readable” versions of Wolff´s 
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work (e.g. Bullynick, 2006), though they were not entirely different either: 
the incorporation and acceptance of some of those concepts and procedures 
did not occur in their first works (e.g. Schubring, 2005) but over the years. 
That way, I intend to contribute to a better understanding of the process that 
led to the modification of the notions of quantity and number among those 
Germanic mathematicians and, in doing so, correct some historiographical 
misconceptions on the subject, common even among contemporary authors.

Valeria GIARDINO
CNℜS - Université de Lorraine / France
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Manipulative imagination: from perception and action to mathematics 
In the first part of my talk, I will briefly present previous work with De 
Toffoli on the practice of topology. We have proposed that topologists, in 
order to become experts, have to learn how to use what we have defined 
as manipulative imagination. Such a form of imagination is central to many 
areas of topology, for example knot theory (De Toffoli & Giardino, 2014), 
low-dimensional topology (De Toffoli & Giardino, 2015) and braid theory (De 
Toffoli & Giardino, 2016). To clarify, in order to follow the proofs, topologists 
have to envisage transformations of and on the diagrams. Their interaction 
with the representations is therefore essential: the figures are not static, but 
have to be used dynamically so as to trigger a form of imagination that allows 
them acting on them and drawing inferences accordingly. ℜepresentations 
are thus cognitive tools whose functioning depends in part from pre-
existing cognitive abilities and in part from specific training. If manipulative 
imagination exists, and possibly it is used also in other areas of the sciences, 
what kind of imagination is it? In the second part of my talk, I will refer to 
the notion of imagination as “make-believe” as proposed by Walton (1990) 
to give an account of the role of cognitive tools in mathematics as props. 
To better specify my claim, I will also rely on the notion of “affordance” as 
proposed by Gibson (1979) and discuss how it can be extended from concrete 
objects to representations.

Eduardo GIOVANNINI
CONICET – Universidad Nacional del Litoral / Argentina
engiovannini@gmail.com
‘Harmonizing Euclidean geometry’: Hilbert and the theory of proportion
The aim of this talk is to provide a historically sensitive discussion of 
Hilbert’s reconstruction of the theory of proportion in his groundbreaking 
monograph Foundations of geometry (1899). It will be argued that Hilbert 
bestowed to this reconstruction a crucial epistemological and methodological 
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significance. On the one hand, the theory of proportion was for Hilbert one 
of the central parts of elementary geometry that called more urgently for a 
new solid foundation. On the other hand, an adequate ‘purely geometrical’ 
grounding for the notion of proportionality was essential for his main aim of 
providing an independent basis for geometry, since this notion was necessary 
for the reconstruction of other important parts of elementary geometry, 
such as the theories of similar triangles and plane area. The presentation 
will be structured in two main parts. In the first part, I will present 
and analyze some critical comments formulated by Hilbert to Euclid’s 
theory of proportion developed in Book V of the Elements. These critical 
remarks consist in pointing out that the Euclidean theory does not have a 
‘purely geometrical’ character, since Euclid never explains what it means 
geometrically for two pairs of geometrical elements – e.g., line segments – 
to be proportional. Moreover, Hilbert observes that the Euclidean theory of 
proportion is grounded on an arithmetical basis, which can be noted in the 
fact that the definition of proportionality provided by Euclid requires the 
validity of a continuity principle such as the axiom of Archimedes. Then, 
I will argue that Hilbert’s objections to Euclid’s theory of proportion and 
similar triangles consisted not only in pointing out the existence of implicit 
assumptions, but also in raising very explicit purity concerns. In the second 
part of the presentation, I will expound briefly the technical content of 
Hilbert’s theory of proportion, that is, his definition of proportionality on the 
basis of the arithmetic of segments [Streckenrechnung]. Hilbert showed that, 
once the operations of sum and product of line segments have been defined 
in an adequate and purely geometrical way, it is possible to use the classical 
theorems of Desargues and Pascal to prove that these operations satisfy all 
the properties of an ordered field. This purely geometrical construction of a 
set of segments, which satisfies all the properties of an ordered field, allowed 
him to reconstruct the classical Euclidean theory of proportions and similar 
triangles, to which he finally resorted to perform an internal arithmetization 
of geometry. Hence, Hilbert produced a unification of two theories, which 
before were grounded on different foundations, giving at the same time a 
new answer to the problem of the role of numbers in geometry.

Emily HAFFNER
Université de Paris 7 /France 
emmylou.haffner@gmail.com
What Dedekind’s mathematical drafts tell us about the genesis of his                   
lattice theory
When ℜichard Dedekind introduces the notions of module and ideal in 
his famous 1871 Supplement X to Lejeune-Dirichlet’s Vorlesungen über 
Zahlentheorie, he also defines notions of divisibility (e.g. a module a is divisible 
by a module b if a ⇢ b) and related arithmetical notions for modules and ideals 
(e.g. LCM and GCD of modules or of ideals). Without specific notation for 
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these new concepts and methods, Dedekind proves the general validity of the 
unique factorization theorem for algebraic number fields. In 1877, in Über 
die Anzahl der Ideal-Klassen in den verschiedenen Ordnungen eines endlichen 
Körpers, the introduction of notations for divisibility, LCMs and GCDs of 
modules allows Dedekind to state new theorems, which are now recognized 
as the modular laws in lattice theory. Observing the dualism displayed by 
the theorems, Dedekind pursues his investigations on the matter, and is led 
to the introduction of the notion of Dualgruppe (equivalent to our modern-
day lattice). The notion is introduced in the 1894 version of Dirichlet’s 
Vorlesungen (under the name Modulgruppe), but Dedekind only exposes his 
theory of Dualgruppe in 1897 (Über Zerlegungen von Zahlen durch ihre größten 
gemeinsamen Teiler) and 1900 (Über die von drei Moduln erzeugte Dualgruppe). It 
was, in his words, obtained “not without great effort” (Dedekind 1897, 113) 
and indeed after two decades of work. In this talk, I propose to study the 
long genesis of Dedekind’s Dualgruppe with the help of drafts kept in his 
Nachlass. Dedekind’s perfectionism and great attention to details is well-
known, and it is not surprising that he kept this work under wraps for such 
a long time. Diving into Dedekind’s Nachlass, one can find an impressive 
quantity of notes and computations around the arithmetical operations 
for modules and ideals leading to the slow, progressive elaboration of 
the notion of Dualgruppe. I will show how Dedekind gradually builds his 
Dualgruppe theory through many layers of computations – often repeated 
in slight variations and attempted generalization – by exploring the various 
possibilities, laws, etc. offered by these arithmetical operations and by the 
dualism of the theorems with series of examples, tables, and calculations. 
In this procedure, he looks for remarkable properties of these operations, 
properties susceptible to be applied elsewhere, generally valid properties, 
and he attempts to identify which properties should be considered as 
“fundamental” ones. These computations and the stepwise generalization of 
the concept largely disappear from the published exposition of the theory, 
which appears as very general and abstract. Insofar as these drafts are working 
tools for Dedekind, by studying the concealed strates of mathematics they 
contain, I wish to reveal and clarify the preliminary and intermediary states 
of the mathematical research, the essential yet hidden practices that support 
Dedekind’s elaboration of the theory of Dualgruppe.
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A multiple perspective approach to history of mathematics: Interplay between 
production of mathematics and the historical conditions of its production.
This presentation is inspired by two of the concerns discussed in Schubring 
(2001): historiography and the importance of the interplay between 
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production of mathematics and the historical conditions of its production. 
I will present a ‘multiple perspective’ approach to history due to the Danish 
historian Eric Bernard Jensen. It will be discussed how such an approach 
can be adapted to history of mathematics, and its usefulness in order to 
unfold and discuss the interplay between production of mathematics and the 
historical conditions of its production (both internally to mathematics and 
externally given conditions). These issues will be explored through one or 
two concrete episodes from the history of 20th century applied mathematics: 
the development of mathematical programming and/or the beginning of 
mathematical biology. The significance of teaching and education in these 
episodes will also be touched upon.
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Not in the Same River Twice: On the Applicability of Mathematics in Physics
The relationship between mathematics and physics is not static but dynamic. 
With the development of abstract pure mathematics in the 20th century and 
late 19th century, this relationship came to be characterized as a “mystery”, 
a miracle “which we neither understand nor deserve”(Wigner 1960). The 
miracle was understood as the unreasonable effectiveness of mathematics 
in the natural sciences: mathematics, the formal game and physics, the study 
of nature. It was with the rise of interest in pure abstract mathematics that 
the number theorist G. H Hardy famously “apologized” on behalf of pure 
mathematicians for having formal beauty (and not applicability) as their 
sole concern in developing mathematics. Hardy’s statement (book) was 
then a fitting confession. Yet the triumph over the miracle of applicability 
soon turned into the lament over missed opportunities. The physicist 
Freeman Dyson in 1972 argued that the relationship between mathematics 
and physics has turned sour mostly due to the lack of interest from the 
pure mathematics’ side. My paper focuses on the relationship between 
mathematics and theoretical physics in the aftermath of Dyson’s “Missed 
Opportunities”. I argue that from the last quarter of the 20th century (up to 
now) we are in a new phase of this relationship. In this phase, mathematics is 
inspired by the work in physics especially in superstring theory (e.g. in work 
of Ed Witten). Studying this newly-formed relationship, gives us insight into 
the characteristics of our current mathematics, which Jaffe and Quinn in 
1993 called “theoretical mathematics”. Moreover, the current trend toward 
unification at least in some areas of mathematics and theoretical physics 
gives us an interesting case sturdy for understanding the changing nature 
of mathematics, physics and their relationship. My work differs from the 
current philosophical literature on the applicability problem in its emphasis 
on the dynamic aspect of the relationship between mathematics and physics. 
Most philosophical works in this area have focused on rejecting Wigner’s 
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conclusion based on examples of the reasonable effectiveness of mathematics 
in the past. Interesting as these works might be, they make the unjustified 
assumption that the nature of mathematics and its relationship with physics 
is static (or that there is only one applicability problem). In this paper, I aim 
to add a historical dimension to Wigner’s problem and its solutions, and to 
characterize both physics and mathematics as live disciplines or as Lakatos 
put it, research programs, that are constantly changing. It is the dynamic 
nature of this relation and its relata that provides a rich and complex 
philosophical problem for the advancement of mathematical practice.
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Material and social conditions for the development of mathematics
Since the late 1980s, science and technology studies have increasingly sought 
to include materiality and the actions of non-human actors in the accounts 
of the production of scientific knowledge (e.g., [1], [2], [3]. Although the 
materiality of mathematics has to some extend been included in this effort 
the understanding of the interplay between materiality and mathematics 
has mainly focused on communicative and teaching situations and we do 
not know much about the role of materiality in other parts of mathematical 
practice. Especially, we have little empirical knowledge about the role 
played by materiality when mathematicians work behind the closed doors 
of their offices. To fill this gap, we conducted a qualitative study among 
research mathematicians ‒ [4]. In short the study shows that materiality 
enters the research practice in several different ways. External (materiel) 
representations thus play a crucial part in the mathematical research 
practice. The mathematicians not only use representation to obtain cognitive 
relief (e.g. by scaffolding of short term memory), they also interact heavily 
with the representations both in the heuristic and in the control phase of 
their research. Furthermore, diagrams and other pictorial representations 
are deliberately used as mediators that connect mathematical content to 
sensorimotor experiences and thus allows the mathematicians to use daily 
life experiences of the material world as a resource in their mathematical 
work ‒ [5]. Finally, it was clear the the choice of representation to was 
socially sanctioned. The individual mathematicians were not at liberty to 
chose what kinds of representations they wanted to use in what situations; 
rather this choice had to be negotiated with the (close) research community. 
In short then, mathematicians practice with representation is a vertex where 
material and social forces touches upon the mathematical research practice. 
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In this talk we will present our main empirical findings and discuss their 
implications for our understanding of the mathematical practice. 
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Euclid’s Elements in XVIIth century. Some remarks
Euclide’s Elements constitute a common cultural reference for mathematicians 
and philosophers (physicists) since the end of the XVIth century till the end 
of the XVIIth. Among the Euclidian statements, some are not deduced from 
priors statements: the common notions (said axioms), the demands (said 
postulates) and the definitions. The authors of the XVIIth century develop, 
indeed, towards Euclide’s Elements two opposite criticisms. For some, Euclid 
would have defined  too many terms and he would have demonstrated to 
many proposals; for others, his error would have been on the contrary   a 
lack of definitions and demonstrations. Academician Blondel (prefacing the 
Elements of Geometry of ℜoberval) gives an overview of the oppositions 
which arouses Euclide’s reading: He is not the first one who notices that Euclide’s 
do not satisfy completely the spirit of those who examine them seriously; and 
although it is no proposal which is of the indisputable truth, its work nevertheless, its 
demonstrations and the position of its principles gave rise to several people from the 
old time, to find fault with it. Some people said that he posed for axiom proposals 
which could be demonstrated by others (Proclus). Others believed that several of ,its 
proposals were absolutely useless and that he had omitted one very large number of 
new proposals which are absolutely necessary for the geometry. [] we shall say only 
that Mr de Roberval has [showed one] application which we could call superstitious, 
to demonstrate one thousand things which the others easily admitted for principles.
To convince us of the reality and the concomitance of these two attitudes, 
we just have to read the treaties of ℜoberval, champion of the first one and 
Antoine Arnaud, the herald of second. Both, at the same moment, undertake 
the same  work: reread Euclide’s Elements and reform them. The diagnosis is 
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the same: the work of the Alexandrine is imperfect and even unfit to form in 
a satisfactory way the spirits which choose to venture into the study of the 
geometry. Antoine Arnauld publishes a first edition of his New Elements of 
Geometry in 1667 and ℜoberval drafts the definitive version of its Elements 
of Geometry from 1669. For the first one, Elements turn the back on the 
natural order and on the clear ideas; for the second, the big weakness is 
the insufficient demonstrative requirement. The comparative study of their 
Elements of geometry shows to what extent Arnauld wish “to demonstrate 
less ‘ (than Euclide) when ℜoberval wants”to demonstrate more ‘.
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From Euclidean Geometry to knots and nets: does Manders’ account of 
Euclidean plane geometry offer a model for the analysis of contemporary 
mathematical proofs?
This paper assumes the success of arguments against the view that informal 
mathematical proofs secure rational conviction in virtue of their relations 
with corresponding formal derivations.  This requires an alternative account 
of the logic of informal mathematical proofs.   This paper proposes an 
account of those informal proofs that appeal to perception or manipulation 
of diagrams and mental models of mathematical phenomena.  Proofs relying 
on mental models can be rigorous if the mental models can be externalised 
as diagrammatic practice.  More specifically, such proofs can be rigorous if: 
a) it is easy to draw a diagram that shares or otherwise indicates the structure 
of the mathematical object; b) the information thus displayed is not metrical; 
and c) it is possible to label the diagram and thereby relate it systematically 
to syntactic, semantic, algebraic or logical notation and inference. This 
argument will refer principally to analyses and case studies by Manders, 
Giardino, Toffoli, Feferman and Leitgeb.
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Iconicity and Visualization: some Notes from Peirce’s Philosophy of Mathematics
Within the framework of the Workshop “Varieties of Visualization in 
mathematics”, the aim of this talk is to analyze the idea of visualization 
arising from the notion of iconicity, as it was devised by Charles S. Peirce in 
his theory of signs. The notion of iconicity is central in Peirce’s conception 
of mathematics. For example, he referred to “mathematical, that is, […] 
diagrammatical, or, iconic, thought.” (CP 3.429 ), and he wrote explicitly: 
“Mathematical reasoning is diagrammatic. This is as true of algebra as 
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of geometry.” (CP 5.148). In his theory of signs, Peirce proposed many 
classifications of signs. According to the way signs refer to the denoted 
entities, signs were classified into icons, indices and symbols. Diagrams fall 
in the category of icons, so that mathematical knowledge is the object of a 
rich analysis where the idea of visualization has a special role.  Geometrical 
figures, tables and formulas are all of iconic nature. Peirce conceived 
mathematical activity as the construction, manipulation and observation of 
icons. In the case of algebra, Peirce wrote in a famous paper from 1885 ”the 
very idea of the art is that it presents formulae which can be manipulated, 
and that by observing the effects of such manipulation we find properties 
not to be otherwise discerned. […] These are patterns which […] are the icons 
par excellence of algebra.” (Peirce, CP 3.363). Two different aspects of iconicity 
will be highlighted: the operational aspect and the purely topological one. The 
first aspect focuses on icons as structural representations on the basis of visual 
properties. In this respect a diagram is characterized as “an Icon of a set 
of rationally related objects” (MS 293: 11) and referred to “icon [or analytic 
picture]” (Peirce CP 1.275). From the analysis and transformation of signs new 
knowledge obtains. In the exposition the elucidation of operational iconicity 
due to Frederik Stjernfelt will be also discussed, stressing its cognitive 
importance. The second aspect is related to the topological features of iconicity, 
which are stronger related to the idea of visualization. Some examples from 
mathematical logic will be provided in order to show different diagrammatic 
systems that are topological equivalent but have different cognitive 
effects leading to differences in visualization. Finally, both aspects will be 
connected with the tradition of symbolic knowledge stemming from Leibniz. 
Summing up, the presentation aims at contributing to the development of 
conceptual framework for appreciating the various epistemic roles played by 
the different varieties of visualizations in mathematical practices.
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Mathematical impossibility in the social sciences. The history of Arrow’s 
impossibility theorem and its philosophical roots
In 1951 Kenneth Arrow combined welfare economy with the theory of voting 
and proved the first general impossibility result about the situation. When 
he was awarded the Nobel Prize in 1972 the press release emphasized his 
impossibility result thus: “As perhaps the most important of Arrow’s many 
contributions to Welfare theory appears his “possibility theorem”, according 
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to which it is impossible to construct a social welfare function out of 
individual preference functions”. Arrow’s book has often been mentioned as a 
revolutionary text, and indeed it changed the approach to social choice theory 
dramatically. In the talk I will discuss the history of Arrow’s impossibility 
theorem replete with multiple discoveries, priority disputes and examples 
of the importance of the institutional context. In particular I shall highlight 
the importance of philosophy for the development of Arrow’s new ideas. 
Indeed, Arrow’s new approach  and his impossibility theorem was partly a 
result of a critique of Bentham’s utilitarianism. Since economists gradually 
came to reject the idea that one can define a utility function (interpersonal or 
even individual), the mathematics of optimization of such a function under 
constraints lost plausibility as a mathematical model of welfare economics. 
Instead, Arrow suggested a new model based on abstract axiomatically 
defined ordered sets. This highlights the importance for applications of the 
modern axiomatic method in mathematics. Moreover, this method also led 
Arrow to a new question about voting procedures: What can one say about a 
voting procedure that satisfies certain axioms? The surprising answer turned 
out to be: It does not exist. The history of Arrow’s impossibility theorem 
can be traced back to Condorcet’s analysis of voting procedures. For the 
enlightenment philosopher Condorcet, voting was a way to find the truth, 
and it would be a mistake if voters let their own interests influence their 
vote. Arrow and his followers, on the other hand, denied the existence of a 
(Platonic) truth and considered the voting procedure as a method to weigh 
personal interests (and tastes) against each other. Ironically this placed their 
view of democracy on the level with what Condorcet considered an ancient 
primitive form of democracy that had been replaced by a more enlightened 
version in his era. But despite the almost diametrically opposite views on 
what voting accomplishes Condorcet and Arrow used similar mathematical 
methods. Thus, the history of Arrow’s impossibility theorem shows examples 
where a change in philosophy led to a dramatic change of a mathematical 
model, and another example where a major difference in philosophy had no 
influence on the mathematical approach.
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Visualizing and Knowing in Mathematical Practice
Visualizations in mathematical practice take a wide variety of forms and 
serve many different epistemic ends. They can, for example, help one to 
understand core aspects of complex mathematical ideas, or enable one to 
discern connections amongst mathematical ideas that are otherwise opaque. 
They can reveal new mathematical possibilities, or new proof ideas. Here 
the focus is on one very distinctive sort of visualization in mathematical 
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practice: the use of specially devised systems of written signs that enable one 
to display the contents of mathematical ideas in mathematically tractable 
ways, that is, in ways enabling rigorous, rule-governed manipulations of 
signs, reasoning in the system of signs. Such a system of signs is a Leibnizian 
universal language, at once a characteristica and a calculus ratiocinator; familiar 
examples of mathematical practices employing such systems of written signs 
are Euclidean diagrammatic practice and constructive algebraic problem 
solving in the symbolic language of arithmetic and algebra. Over the course 
of history, such systems of signs have proved extraordinarily powerful and 
fecund. My interest is in two aspects of this feature of such systems. I am 
concerned, first, with what these sorts of visualizations, and the systems 
they involve, can teach us about ampliative reasoning in mathematical 
practice. Because they display a variety of quite distinctive sorts of steps 
of mathematical reasoning, such visualizations of reasoning provide a very 
fertile ground for the philosopher reflecting on how proofs in mathematics 
can extend our knowledge. The second issue to be addressed through a 
reflection on these visualizations in mathematics is that of the a priori 
character of mathematical knowledge. As it is understood here, the notion 
of the a priori in mathematics concerns not certainty, or infallibility, or 
incorrigibility, but self-standingness, the fact that in mathematics it is always 
possible, in principle, to see for oneself how a proof goes. In mathematics, 
that is to say, one need never rely on testimony, either that of another, or 
that of one’s own senses. Because the systems of written signs of concern 
here enable one visually to set out the reasoning, they also enable another 
to reproduce it, to enact that very chain of reasoning. These two features 
of devised systems of written signs which to reason—their role in enabling 
philosophical understanding of ampliative deductive proof and their role 
in clarifying the a priori character of mathematical knowledge—can, in 
turn, help us to understand how the mathematician achieves and maintains 
cognitive control in her mathematical practice.
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From counterexamples to examples, or when pathologies become the norm
Pathological objects play an important role in mathematical understanding 
even though there is no precise definition of them. The goal of this talk is 
not to try to define them but rather to comprehend the role they play within a 
given mathematical theory which in this case will be Mathematical Analysis. 
The concept of function arose as such in the works of Leibniz and Johann 
Bernoulli in the late seventeenth century and it became the main object of 
study of this field with Euler’s work. We will describe briefly how the notion 
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of function changed dramatically in the nineteenth century and we will study 
how this change not only came about but also how it brought on important 
changes for the subject both from a mathematical and a philosophical 
standpoint. We claim that it was from the proof of existence of a pathological 
function (in fact, of many pathological functions) that the nature of the 
concept itself was forced to change and that this development was what truly 
shed light on the idea of a function, so much so that by the first half of the 
twentieth century pathological functions had become the rightful objects 
studied by Mathematical Analysis. Pathologies, it would seem, rely upon 
certain properties occurring only in a few instances but cease to exist when 
these properties are held by most objects in a given class. This case study 
in particular also leads us to analyse the relationship that exists between 
pathological objects and counterexamples in mathematics. Pathological 
objects are usually born as counterexamples but many counterexamples do 
not rely on anything that can be classified as pathological.
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Cultivating Mathematicians: Memory, learning, and cognitive apprenticeship  
in mathematics
In the cognitive science of memory, classical models invoking the encoding 
and retrieval of a stored trace have been largely replaced and revised [1].  
Researchers studying and modeling memory increasingly seek to adequately 
capture and emphasize the dynamic, distributed, and interdependent 
properties exhibited by a broad and ever-increasing collection of memory 
phenomena [2]. This research has in turn informed research in learning and 
education [3]; dynamic, context-dependent, generative models of human 
memory provide a novel base of support for the situated learning approach 
championed by [4], encouraging education strategies that emphasize 
cognitive apprenticeship and methodological development [5]. If human 
memory and learning consist mainly in reconfiguring the associations and 
apperceptions of the learner to align with expert practices, then there are 
compelling reasons to situate material not just synchronically—focusing 
on embodiment, physical environment, and real-world applications—but 
also diachronically. Especially for abstract material, situated apprenticeship 
requires witnessing the historical development, processes, and discourses 
of the subject. Mathematics, in particular, has been a difficult subject to 
assimilate into situated approaches to education, despite notable and ongoing 
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efforts (that tend to focus on synchronic elements of situated cognition) [6].  
Superficially, mathematics can seem eminently abstract and context-free; 
although researchers have begun revealing the human, practice-oriented, 
situated components of the domain [7], much work remains. Influential 
research applying cognitive science to mathematics education has also 
focused on abstraction and on cognitive capacities for abstraction [8], rather 
than on the cognitive apprenticeship and intransitive learning suggested 
by the rejection of classical models of memory.  Given the nature of human 
memory, we contend that inducting learners into mathematical practices 
means attending to the historical, contingent, material, discursive practices 
in the development of mathematics. Teaching the historical development 
of mathematics in math education has garnered various support and 
discussion [9]; in particular, the above considerations provide support and 
refinement for the approach endorsed by [10], building on the work of  [11], 
which emphasizes meta-discursive rules and methodological development 
as consequences of teaching history in math education. Given that the 
historical development of mathematics is the ongoing, situated cultivation 
of mathematical concepts by expert practitioners [12], the kind of history-
oriented methodological development advocated by Kjeldsen and Blomhøj 
just is a way of situating the learner in the practices and processes of 
mathematics.  This broadly situated, process-attentive, diachronic approach 
is in accordance both with the insights of the situated learning tradition and 
with the lessons learned from the contemporary science and philosophy of 
memory.  Given the dynamic, intransitive, situated nature of human memory 
and learning, educators should attend to the human practices and historical 
development of mathematics in order to apprentice learners to the craft.
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Semantic information and the ampliative character of formal knowledge
We propose a reassessment of the traditional theory of semantic information 
(TTSI). Bar-Hillel and Carnap [1] proposed TTSI as a theory for measuring 
the amount of information carried by sentences. In accordance with their 
original motivation, our interest is in the minimum semantic information 
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associated with the propositional content of sentences. As is well known, 
TTSI implies Bar-Hillel and Carnap’s paradox of semantic information (BCP) 
by which contradictions have maximum information and, by contraposition, 
logical truths have null information. This is problematic since it does not 
make room for characterizing formal knowledge as ampliative knowledge: 
if logical truths were not really informative, then to discover a logical truth 
would not change anything in our epistemic state. Nevertheless, in practice, 
gaining formal knowledge is not a trivial fact. In reaction, recent work [2] 
recent work (e.g.) proposes abandoning TTSI in despite of the good insights 
on the nature of semantic information that it formalizes. In contrast, we 
propose a more conservative solution by just changing the semantic 
framework that underlies TTSI: more specifically, we propose substituting 
classical semantics for an alternative framework known as urn semantics 
[3]. Urn semantics, by characterizing a way of relativizing quantifiers for 
parts of a given structure, defines a non-classical notion of satisfaction that 
enables us to define models for some classically unsatisfiable sentences, a 
property that blocks BCP. Now, our strategy finds motivation in arguments 
by [4] among others for semantic externalism. One of the fundamental 
claims of semantic externalism is that there is a di↵erence between the 
truth conditions of a sentence and the epistemological stance on these 
truth conditions by someone who understands the sentence. We claim 
that the minimum semantic information of a sentence is related with such 
epistemological stance that is adequately formalized by urn semantics. We 
argue by exploring variations of Kripke’s puzzle and Twin Earth argument 
involving partial ignorance of the domain of quantifiers occurring in the 
considered sentence. Finally, we draw some comparison with alternative 
ways of solving 2 the problem, especially, we compare our result with that by 
[5]. Even though these works have some similarities, Hintikka’s work faces 
some problems which do not challenge our result.
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Catholicism and mathematics in the sixteenth and seventeenth century
In his paper Production mathématique, enseignement et communication  Gert 
Schubring argues that the historian of mathematics must  consider the 
religious context of the production of mathematical knowledge. In his own 
words “the diverse religions gave to this knowledge different socials values 
and functions”. At the early Modernity several priests of the ℜoman Church 
made important contributions to the growing of mathematical science, 
produced commentaries on the works of ancient geometers, elaborated 
philosophical reflexions on  this science  and wrote several  text books for his 
teaching. Between them we can name Clavius, Guldin ,Cavalieri, Mersenne 
and Arnauld. The aim of our exposition will be to show and to discuss the 
functions attributed by the several religious orders and priests of the ℜoman 
Church  to Mathematics.  These were various:  Apology of Christian Faith 
against atheists, aid for the interpretation of the Holy Scriptures, refutation 
of scepticism and deism, backing for the Aristotelian philosophy, preparation 
for the understanding of the Truth of Christian Faith. Especially we will 
discuss four works: The dissertation on the nature of Mathematics, written by 
the Jesuit Biancani, The truth of science against the sceptics written by father 
Mersenne, The new Elements of Geometry, work of Antoine Arnauld and finally 
The Elements of Geometry, text of the Jesuit Ignace Pardies.
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Carroll’s infinite regress, mathematical understanding, and the act                     
of diagramming
A central question in the epistemology of mathematical practice is how 
mathematical  understanding  drives and constrains the production of 
mathematical proofs.  In my talk, I examine this question from the perspective 
of Lewis Carroll’s ‹What the Tortoise Said to Achilles.›  In the piece, Carroll 
shows how an infinite regress can be generated from the demand that all 
premises in a deductive inference be made explicit.  In the first half of the 
talk, drawing from Barry Stroud’s ‹Inference, Belief, and Understanding’, I 
argue that the moral of the infinite regress bears directly on the question of 
mathematical understanding.  Understanding a mathematical proof requires 
understanding how the conclusion of each inference step is necessitated by 
the inference step’s premises, and this understanding is an act on the part of 
the mathematical reasoner that is left out of any analysis that simply depicts 
the proof’s inference steps as logically related propositions.  Accordingly, one 
way to progress on the question of mathematical understanding is to provide 
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accounts of the various ways acts of inferential understanding are carried 
out in mathematics.  In the second half of the talk, I sketch the beginnings of 
an account that characterizes a species of such acts as diagrammatic.  I focus 
specifically on a very simple geometric inference: that a point a is before a 
point c on an oriented geometric line if a is before a third point b and b is 
before c.  I explore how the act of diagramming the configuration can be 
thought to constitute an act of understanding, and thus can be thought to 
carry us across the gap that Carroll’s regress opens up.
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Logic and Proofs in Euclid’s Geometry
According with the analysis proposed by Paul Bernays and other scholars 
like Ian Muller, Euclid’s geometry has to be considered as a theory of 
constructions, in the sense that geometrical figures are studied as constructed 
entities. In this sense, Euclid’s geometry opposes to contemporary axiomatic 
theories — like Hilbert’s reconstruction of Euclidean geometry — which 
proceed from a system of objects fixed from the outset and simply describe 
the relationships holding between these objects. The aim of this talk is to 
present a formal and logical analysis of Euclid’s constructive practice as it 
emerges from the Elements (in particular Book I). First, it is claimed that 
this notion cannot be captured by standard methods of constructive logic 
— like the witness extraction from existential formulas — since in Euclid’s 
Elements there is nothing like a fixed domain of quantification from which to 
start. On the contrary, it is the constructive activity itself that allows one to 
generate, step by step, the domain of the theory. In order to give a formal and 
precise analysis of this point, the second part of the talk aims at studying the 
proof methods used in Euclid’s Elements. A reconstruction of these methods 
is thus proposed, according to which postulates correspond to production 
rules (acting on terms and) allowing one to introduce new objects starting 
from previously given ones. This is done by means of primitive functions that 
correspond to the actions of drawing a point, drawing a straight line, and 
drawing a circle, respectively. It is then shown that a combination of these 
rules corresponds to a proof allowing one to solve problems, that is, to show 
that certain constructions are admissible from primitive ones. Moreover, in 
order to demonstrate that the constructed objects posses certain specific 
properties, a method for taking track of the relationships between the entities 
used during the construction process is proposed. This method consists in 
labelling proofs by means of relational atoms, as well as sentences formed 
by combinations of these relational atoms. The language used for specifying 
the properties of the constructed objects will be kept as minimal as possible 
since the final aim is to show that, contrary to what is usually believed, the 
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logical apparatus present in the Elements is in fact a basic one, weaker than 
intuitionistic or even classical logic.
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The Applicability of Mathematics as a Philosophical Problem. 
Mathematization as Exploration
What makes the applicability of mathematics a philosophical problem? 
We juxtapose answers along two very different lines of reasoning. The 
first frames the problem as an ontological one: How do mathematical 
objects, like numbers, relate to objects in the real world? Any solution will 
specify on which logical grounds mathematics can be linked to realworld 
science whereby mathematical and real-world-objects are taken to exist 
independently from each other. The second reply puts applicability into 
an epistemological framework. The philosophical point then is rather how 
the process of mathematization changes both mathematical and real-world 
objects. Accordingly, mathematization is about exploring the universe of 
(potential) objects and relationships. The central fact for the applicability 
of mathematics therefore is the partial independence between sense 
and reference. The standard conception of the problem of applicability 
follows the first perspective. According to Mark Steiner, Frege “completely 
solved the semantic and the metaphysical problems of applicability” of 
mathematics, by defining numbers as concept extensions (Steiner, 1998. p.23). 
The idea of number was Frege’s fundamental concern because he believed 
that arithmetical statements express objective thoughts and are applicable 
because these thoughts are about objects described in them. 
In contrast, explorative mathematization assumes objects are not yet fixed. A 
main reason scientists find mathematics so useful is 

“an indication of how little is known about the physical world. It is 
only the properties well suited to mathematical description that we 
have been able to uncover. (…) This position is more likely assumed 
by consumers of mathematics rather than by mathematicians 
themselves. The great number of books titles like Mathematical 
Modelling of Hydrodynamic Phenomena, etc., is an expression of this 
position” (Barrow, 1992, our translation, p. 50). 

This situation suggests that there is a different conception of mathematiza-
tion. A different sense that highlights the creative and actively transforming 
nature of mathematical investigations. In this second sense, mathematization 
is a process that is opening up new and (not yet) conceptually conquered 
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territory. This is what we call the explorative type of mathematization. From 
the latter perspective, the problem of applicability is not a logical problem, 
but is rather a problem of historical and epistemological nature. Mathematics 
has developed quite many concepts and methods to make numerically 
different things comparable: number, function, vector, structure, etc. etc. 
We make sense of facts by putting them into a specific theoretical context. 
Now, A = B holds, and thereby it differs from the equation A = A, besides the 
identical which is indicated by the equals sign, something different as well is 
suggested by using the different symbols A and B. Depending to where one 
places the identity and the difference, one can see such an equation in two 
ways. Frege’s classic example was that “Hesperus” is the name of the “Evening 
Star”, while “Phosphorus” (or “Lucifer”) is the name of the “Morning Star”; 
but it turns out that the Evening Star and the Morning Star are the same 
thing, the planet Venus. Frege’s interpretation of identity statements is due 
to his belief that there must be an intimate link between sense and reference 
as well as that the latter must prevail. However, one can conceive of A and B 
as different objects and then conclude that the equation designates an equal 
aspect or a relation between these different things. Take as an example the 
discovery of the relation between electricity, magnetism, and light, which 
were found to be different aspects of the same thing, which we call today the 
electromagnetic field. The two different interpretations of A = B represent 
in a nutshell the differences between the foundational vs the explorative 
conceptions of mathematization. This paper highlights mathematization 
as exploration and documents how relevant this type is for the problem of 
applicability. We do not want to abandon the foundational type, though. In 
driving the development of mathematics, both types assume complementary 
roles. If we concentrate more on the dynamical type, it is because this type 
is neglected philosophy. The paper comprises two main parts. The first 
one deals with the philosophical transformations that made explorative 
mathematization possible. The most important factor is the split between 
sense and reference, or syntax and semantics in our considerations of nature 
during the Scientific ℜevolution of the 17th century. Our starting point is 
Michel Foucault’s (1973) The Order of Things (Les Mots et les Choses) and the 
transition from an Aristotelian science of interpretation to the Baroque and 
the epoch of representation. Words and things separated during the so-called 
“Classical” age, which on its part ended with the advent of historicism during 
the 19th century. Only then the relationship between sense and reference 
could become an object of investigation. Their partial independence opened 
up new possibilities of reflection which could be explored in semiotic terms. 
In the second part we discuss a series of three examples that highlight 
the complementary nature of the foundational and exploratory types of 
mathematization. These examples deal with the different treatments of the 
continuum, with the calculus ratiocinator vs. lingua universalis distinction 
and modern axiomatics, and with interpreting Heisenberg’s matrix mechanics 
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as an instance of explorative mathematization. We conclude by arguing how 
important the explorative perspective of mathematization is for gaining an 
adequate picture of mathematization and for the role mathematics plays for 
scientific knowledge.

Marco PANZA
CNRS / France – Chapman University / USA
panzam10@gmail.com
Mathematical objects and mathematical practice
Platonism is usually presented as the view that there are mathematical 
objects and they exist independently of us as self standing objects which 
mathematics works on. This is a metaphysical thesis, which, has, as such, 
little to do with mathematical practice. What has much to do with this 
practice are some consequences of this option concerning the admission of 
some mathematical methods and the appropriatness of some mathematical 
problems. One of these consequences is the idea that different mathematical 
theories can interact so as to provide complex proofs of theorems within 
a theory passing through other theories.  Hence a natural question is this: 
is there a way to defend a platonistic view, whitout being forced to accept 
a quite doubtful metaphysics, and also whitout arguing metaphysically? 
In other terms, there is a way to approach the question that traditionally 
Platonism answer to from the point of view of mathematical practice. I’ll 
argue that there is, by grounding of the idea that objects are constituted 
along this practice: they are stable intellectual contents that we can have 
epistemic de re access to. In this sense, what is essential in the platonism 
view is the ‘works on’ part, rather than the ‘exist independently’ part.
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The Relevance of Logic to Mathematics
What has Logic done for mathematical practice after all? What contribution, 
if any, has logic made for the practice of mathematicians? The answers 
to this question range from everything to nothing. On one pole, given that 
proofs are the only type of conclusive evidence in mathematics for the truth 
of a mathematical statement, Logic would be fundamental to mathematical 
practice to the extent that it investigates one of the most basic tools of 
mathematical practice: the construction of proofs (not to mention the well 
known idea that in fact mathematics is nothing but logic!). On the other pole, 
one could also say that logic is of little importance (or of no importance) to 
mathematical practice in general, given that this practice is not affected (or 
very little affected) by this kind of investigation: mathematicians in general 
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would continue to prove and to calculate without any specific knowledge 
of proof theory or recursion theory. Philosophy for sure has affected both 
logic and mathematical practice: intuitionism is a good illustration of this 
fact. My aim in this talk is to explore some relations between two basic 
mathematical techniques – proof construction and calculation – in order to 
indicate a possible interesting way in which logic could be relevant, if not 
to mathematical practice in general, at least to some parts of mathematics.
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CNRS – Université Paris 1 / France
Mattia.Petrolo@univ-paris1.fr
Mathematical practice vs logical normativity: the case of set-theoretic paradoxes
Cantor discovered the paradox of the greatest cardinal and its implications 
around 1896/97. As Ferreirós [1] puts it: he “realized perfectly well that these 
paradoxes were a fatal blow to the “logical” approaches to sets favored by 
Frege and Dedekind”. Nonetheless, the discovery of the paradox didn’t 
perturb Cantor’s research on cardinal and ordinal arithmetic. It simply 
led him to disprove the existence of the totality of all cardinals. Indeed, he 
showed that the assumption of its existence contradicts his definition of a 
set as a comprehension of certain objects of our intuition. As remarked in [2], 
Cantor “is therefore not really concerned with paradoxes and their solution, 
but with non-existence proofs using reductio ad absurdum arguments”. 
Hilbert formulated his own version of Cantor’s paradox between 1897 and 
1900 (see [2]). Hilbert thought that his version of the paradox was particularly 
relevant to ordinary mathematics because it avoided references to Cantor’s 
infinite arithmetic. The aim of this paper is to compare Cantor’s and Hilbert’s 
approaches to set-theoretic paradoxes. We argue that such a comparison can 
shed some light on two different attitudes toward mathematical practice, 
as far as foundational issues are concerned. On the one hand, we argue that 
Cantor’s position is paradigmatic of the view that a working mathematician 
can embrace. From this perspective, paradoxes are not a threat to the whole 
theory, they simply ask for some amendments at a local level. This attitude 
allows to maintain unaltered the theory as long as possible and seems tightly 
linked to a practical approach to mathematics. Following such an approach, 
a mathematical theory has, as it were, an internal normative role. If set theory 
corresponds to an accepted practice, which has a certain success in a certain 
community, then the norm (e.g. for correctness or success) is determined by 
the current practice inside the community itself. On the other hand, we argue 
that Hilbert’s position is paradigmatic of a logical approach to the paradoxes 
in the foundations of mathematics. From this point of view, paradoxes 
are a real threat to the whole building of mathematics because they arise 
by applying simple and intuitive concepts in a foundational mathematical 
theory. This attitude looks for a general solution to the problem of paradoxes 
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and seems to correspond to a more abstract approach. This approach assumes 
that the norm is imposed “from outside” the theory. The logical norm 
regulates and, if necessary, amends an existing practice which is considered 
as imperfect (as showed by the discovery of paradoxes in Cantor’s set theory). 
In this case the norm is absolute and it does not depend on a specific theory. 
In the final part of the paper, we discuss which are the consequences of our 
analysis for the kind of set-theoretic pluralism put forward by [3] Shapiro 
(2014). In particular, we discuss to what extent the possibility of weakening 
the underlying logic rather than restricting the problematic set-theoretic 
principles responsible for the paradoxes constitutes a philosophically viable 
alternative to the standard view in the philosophy of set theory. 
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Nominalistic content and the communication problem 
A neglected problem in the philosophy of mathematics is “How is it that 
mathematicians can happily communicate despite having different views of 
the nature, and even the existence, of mathematical objects?” [1], sec. 10). Call 
this ‘the communication problem’ [2]. I take it that solving the communication 
problem is central to any account of mathematical practice. One answer to 
the communication problem is that what is conveyed by a typical utterance of 
a mathematical sentence is a content which is acceptable regardless of one’s 
metaphysical/ontological views. I will call such content ‘nominalistic content’. 
Any account of nominalistic content should characterize this content and 
address the problem of how nominalistic content gets conveyed. I will argue 
that Yablo’s work on subject matter [3] yields a nice characterization of 
nominalistic content and a neat explanation of how communication between 
mathematicians holding different metaphysical views takes place. I will 
sketch a conception of contents according to which contents are connected to 
the subject matters or topics they address. I will argue that typical utterances 
of pure and applied mathematical sentences do not address the topic whether 
there are mathematical objects. They either address the topic how the concrete 
world is (applied mathematics) or the topic how numbers are (pure mathematics). 
Following Lewis and Yablo, I will define a notion of orthogonality between 
subject matters and argue that both the subject matter how numbers are and 
the subject matter how the concrete world is are orthogonal to whether there 
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are mathematical objects. In light of this, I submit the following answer to 
the communication problem: the existence of abstract mathematical objects 
is orthogonal to the topic addressed by typical utterances of mathematical 
sentences. I will argue that the aforementioned subject matters are orthogoal 
because mathematical objects are ‘preconceived objects’ [4], i.e. objects whose 
features are fixed by the way they are characterized. If mathematical objects 
are preconceived, the distribution of truth values among mathematical 
sentences does not depend on the existence of numbers, in line with the idea, 
defended by Putnam and others, that there can be mathematical objectivity 
without mathematical objects [5] (lecture 3). 
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Contradiction, paradox and mathematical practice
In the book How Mathematicians Think: Using Ambiguity, Contradiction, 
and Paradox to Create Mathematics (Princeton University Press, 2007) 
William Byers presents and defends the view that mathematics is not 
a body of definitions, rules and   theorems but, rather, it is a practice 
that depends essentially on intuition and creativity, and is developed 
in contexts where ambiguity, contradiction and vagueness have an 
important role. We agree with Byers’ view on mathematics. We endorse 
the thesis that mathematics is mathematical practice, and the latter 
is much more liberal than the current, somewhat commonsensical, 
concept of mathematics as an almost algorithmic activity, that proceeds 
methodically, step by step, according to rules that are classical logical rules. 
We do not think, however, that all the aspects of mathematical activity 
emphasized by Byers should be called ‘non-logical’. We need to free ourselves 
from the bounds established by classical logic and acknowledge that 
rationality is more than a theory of preservation of truth. In fact, rationality, 
and logic as an account of rationality, does not mean the unconditional 
avoidance of contradictions -- actually quite the contrary. The aim of this 
paper is to investigate to what extent a paraconsistent and paracomplete 
logic may be the underlying logic of the framework in which mathematical 
creativity arises. (Joint work with Walter Carnielli)
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Illocutionary Acts in Mathematics
Contemporary theory of illocutionary acts was originally developed inspired 
by Austin (1962) and further elaborated by Searle (1969, 1975, 1979) as an 
account of typically (and apparently purely) linguistic phenomenon, namely, 
the illocutionary aspects of utterances produced in the concrete use of 
language. In particular, this theory searched for a foundational account 
of the possibility of promises, orders, statements, suggestions, etc., and of 
the differences between these different acts. It was originally thought as 
a theory belonging only to the pragmatics of language and devoted solely 
to linguistic aspects of human actions. Later, however, this theory found 
widespread application in the philosophy of mind, philosophy of law 
and, more recently, in the foundation of social sciences, since most of the 
social ontology (institutions) can be seen as the product of some special 
illocutionary acts. The working hypothesis of this paper is that, although 
mathematics is usually seen as the realm of objective truths and truth-
functional propositions, there are some basic and unavoidable illocutionary 
ingredients in the mathematical practice: if we consider that mathematical 
theories are produced by speakers and addressed to other speakers, they must 
have some illocutionary aspects. For instance, they must contain some initial 
stipulations (definitions, postulates, choice of vocabulary, rules of inference, 
etc.), and include in its metalanguage a typically performative vocabulary 
(‘therefore’, ‘we conclude’, etc.). These illocutionary acts create a network 
of what Searle calls “institutional facts” (i.e., non-natural facts) that do not 
belong originally to the mathematical realm, but interact with that realm 
and are used as a kind of platform for the study of that realm. This paper 
will study some historic cases and try to draw some preliminary conclusions 
about the interaction between these two realms.
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The role of notations in practices of 19th century logic
In his recent account of mathematical practices, Ferreirós [1] has included 
ideograms and notations as part of the symbolic frameworks that constitute 
a practice. One particular role that notations can play in the history of 
mathematics is explored in this talk. In particular, I will focus on two 
main strands in 19th-century logic: [2] The Algebra of Logic of Boole and 
his followers (e. g., Jevons and Schröder) and Frege’s Begriffsschrift. When 
looking at the historical development, we can observe that although the 
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conceptions of logic of both Boole (and his followers) and of Frege changed 
quite substantially, their notations remained essentially the same, apart 
from some relatively minor modifications. On the one hand, the similarity 
of the Boolean notation to that of algebra, with which readers were familiar, 
was attractive and was retained also after Boole’s arithmetic interpretation 
was rejected by Jevons and Schröder. On the other hand, the unfamiliar 
design of Frege’s Begriffsschrift deterred many readers, despite it being 
more powerful and rigorous. Moreover, in the ensuing debates between the 
proponents of different conceptions (e. g., Jevons’ and Schröder’s criticisms 
of Boole, as well as the reviews of Frege’s Begriffsschrift and his replies to 
them), the form of the notations were a major issue of contention and much 
less so their expressive power. A careful investigation and discussion of 
these historical developments leads to the conclusion that the notations 
themselves played an important role in individuating and consolidating 
these logical practices.
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The impact of mathematics teaching upon the development of mathematical 
practices
Traditionally, the teaching of mathematics has been seen as having no 
influence on mathematical practices and their development. The contents of 
teaching are seen as a certain kind of projection of academic mathematics, 
as a certain sedimentation. Therefore, the relation between the development 
of mathematical practices and the teaching of mathematics uses to be 
conceived of in a uni-lateral direction, without an impact of teaching upon 
research. Willem Kuyk, however, had denounced this traditional view 
in 1978, in saying: the teaching of mathematics is not a stalagmite just 
receiving drops from a stalactite. In this paper, as in the entire workshop it 
will be emphasized that there are productive interactions between the two 
poles. Three examples even for an impact of teaching upon mathematical 
practices will be presented and discussed. The first one relies on Christine 
Proust’s research on the mathematical practices of the scribes in the Old 
Babylonian culture. While teaching the apprentices, the masters perfected 
and developed the practices of arithmetic and geometry already established. 
The second and the third example concern the 19th century of modern times. 
In 1885, when Georg Cantor was still perfecting his set theory providing 
new fundaments for mathematics, Friedrich Meyer – friend of Cantor and 
mathematics teacher at the Gymnasium in Halle – elaborated a schoolbook 
on arithmetic and algebra, as reorganised from this basis of set theory. The 
third example concerns non-Euclidean geometry: In 1874, shortly after the 
first establishments of mathematical practices with the new geometries still 
meeting strong resistance from many mathematicians and from philosophers, 
a mathematics teacher at a Hamburg Gymnasium had published a geometry 
textbook according to Bolyai’s notion of absolute geometry.
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Visual aspects of scientific models: the case of turbulence
ℜecent discussions question the role of sensory aspect in not only in proofs 
but also in models and thought experiments. How important are images? 
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Are they necessary? ℜelevant philosophical opinions divide into camps. For 
example, Brown, Gendler, Nersessian argue that visualisations are essential. 
Norton claims that visualisations are irrelevant in thought experiments. 
Meanwhile, Salis & Frigg (forthcoming) suggest that images are sometimes 
useful for thought experiments but never necessary. My position is that in 
some cases visualisations are necessary, e.g. when reasoning requires mental 
manipulations over them of images from diagrams (most recently Giaquinto 
& Starikova forthcoming, Starikova 2016, De Toffoli & Giardino 2014, 2016).
This paper moves focus from pure to applied mathematics, and to the use of 
images in studying physical phenomena. There are still phenomena waiting 
for a better mathematical grip, for example, turbulence. I will argue that a 
visual image (of a model of physical phenomena) can play an important role 
in guiding the mathematicians’ research and choosing new mathematical 
resources. In particular, I will show that ℜichardson’s model of a cascading 
wave motivated both Kolmogorov’s statistical theory of turbulence and more 
recent geometric interpretation of the shape dynamics of a fluid volume. This 
is how an application of ℜiemannian geometry (ℜicci flows) in mathematical 
description of turbulence became accessible. The paper distinguishes 
“loose” geometry, which means simply visualising a phenomenon, and 
“strict” geometry, which means already looking at the visual representation 
geometrically and applying geometry to the initial problem. On the basis 
of this distinction one can observe from the case study that loose geometry 
opens up possibilities for strict geometry. Visual representations can (even in 
very complex mathematics) guide research in a certain (geometric) direction, 
when a merely linguistic / symbolic representation does not help.
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Carl Snell ‘My Revered Teacher’: Education, Euclid and System in Frege and  
his Environment
This paper is an installment in a larger project of reconstructing Frege’s 
intellectual environment and reading some of his more puzzling remarks 
in that context. Here I’ll discuss Frege’s view of the importance of system 
as displayed in Euclid’s Elements and the connections to explanation and 
to extending knowledge/“fruitful concepts”. The reconstructed background 
involves the man Frege calls his “revered teacher” Carl Snell, professor of 
mathematics and physics at Jena, particularly Snell’s influential writings on 
mathematics education. and the mathematics textbooks incorporating that 
approach. Snell’s approach was shaped by the “genetic” (aka “heuristic” aka 
“analytic”) approach of the education theorists Pestalozzi and Herbart, in 
opposition to the “dogmatic” (aka “synthetic”) method taken to be embod- 
ied in Euclid. Snell’s approach to pedagogy involves an explicit opposition 
to Euclid’s Elements as a teaching tool. Euclid, in Snell’s view, is struc- 
tured artificially rather than “organically” in a way that reflects the genesis 
of ideas. Snell asserts that his approach produces a system with “organic 
structuring” (organische Gliederung), and hence it introduces the topic in 
a way that facilitates active learning through following the path of discov- 
ery. The phrase “organische Gliederung” was picked up and repeated in the 
pedagogical literature, in essays lauding Snell’s approach. (The paper will 
also consider the broader community of Herbartian education theorists at 
Jena, including others such as Leo Sachse that Frege knew well.) Frege’s 
remarks on the importance of “more organic” fruitful concepts for extending 
knowledge can be seen as an attempt to preserve central themes in Snell’s 
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anti-Euclidian picture of the growth of knowledge while holding on to some 
insights Frege attributes to Euclid. 

Francisco VARGAS
Universidad El Bosque / Colombia
Ludwigsburg University of Education / Germany
fjvargasm@unbosque.edu.co
Looking for an account of phenomena in Math education reasoning as it occurs
The experimental evidence accumulated in the last decades in the 
psychological literature on reasoning shows us that the interpretation 
and use of the logical connectives in different contexts is far from obvious 
and that this is a phenomenon not limited to purely theoretical subtle 
concerns. This is the case, in particular, with the meaning of conditional 
statements. One of the effects more widely reported and studied is that these 
are interpreted in different ways, very commonly in disagreement with the 
meaning of the material implication. Nowadays standard experiments like 
the Wason Selection task and experiments on the use of deductive schemata 
give us a complex vision that can be seen (and has been very widely seen) as a 
lack of the normative logical competency and even as supporting our lack of 
rationality. It is also possible, however, to take into consideration different 
logical standards and accounts others than classical logic, which may not only 
help us to reevaluate such views, but to give us also a deeper understanding 
and an explanation of why we reason as we do. The same discourse is valid 
in regard to the Mathematical Education literature. The research in this field 
has been dominated by the piagetian idea that an adequate and complete 
description for students’ stage of development is provided by an analysis 
of the 16 possible propositional classical connectives, together with the 
interaction of propositional connectives with the usual quantifiers. This is 
taken for granted in widely influential studies, some of them from very recent 
years. As an example of this situation we can consider how the tendency 
(present in basically all the educational levels) to treat conditional statements 
as biconditionals is understood. Some authors refer to this as the use of 
“child logic” (in contraposition to a “math logic”). This characterisation 
shows us sharply that this kind of phenomenon is widely interpreted only 
as a lack (according to the equation “a child=an incomplete adult”), and not 
as a phenomenon that can be characterised, explained, and even justified on 
its own. The prominency of this kind of common “mistakes”, in fact, calls 
for a description of what are the processes so commonly at play, and this 
could also lead us eventually to an explanation of why is it so. My purpose 
is therefore: (1) to examine both the empiric evidence (some of it form my 
own experiments) related to some of the tendencies already mentioned, in 
a critical dialogue with the Math education literature, and (2) to give an 
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account of these common tendencies using the tools of logic (in particular, 
some non-monotonic Logic Programming systems) in order to describe and 
understand them from other standards, different (and more adequate, I will 
argue) from the current ones.
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Proofs without foundations

The suggested talk will reconsider the role of foundations in our practice 
of mathematical proofs. We are used to thinking of proofs as procedures 
that guarantee the correctness of mathematical claims. We further tend to 
assume that in order to do that, proofs must advance from well-established 
foundations to less established conclusions. Of course, it is well established 
that proofs have a host of other functions, such as: to convince, to explain 
why a claim is true, to systematize knowledge, to discover new truths, to 
set a standard for mathematical communication, to demonstrate the use 
of auxiliary mathematical notions, and to exercise our capacity to reason. 
However, an argument is likely to have its status of “proof” revoked, if 
it fails to lead us with sufficient certainty form established foundations 
to a stated conclusion. In my presentation I will argue for the historical 
and cognitive possibility of cultures of proofs without foundations (I 
do not refer here only to foundations in the modern rigorous sense, but 
also to a much broader, traditional sense of the term “foundations”). The 
historical support will come from Śaṅkara’s 16th century Kriyaakramakarii 
– a Sanskrit commentary to Bhaskara’s 12th century canonical treatise 
Liilaavatii. I will argue that this commentary, which makes an effort to 
provide many mathematical proofs, establishes no clear starting points 
or directionality for proofs, and therefore no mathematical foundations. 
Instead, the function of proofs in this commentary is to relate different 
kind of mathematical knowledge into an integrated system. The cognitive 
support for the possibility of cultures of proofs without foundations 
will come from non-modular models of embodied cognition. A typical 
understanding of embodied mathematical cognition hypothesizes a 
common embodied experienced foundation, which serves as grounds for 
more abstract mathematical notions. I will present alternative cognitive 
models to argue that even abstract notions feed back to reshape our 
embodied experience. This means that the role of proof is to cognitively 
relate notions in a state of flux, rather than proceed from established 
foundation to tentative abstraction. This understanding can be related to 
Wittgenstein’s and Lakatos’s views on the role of mathematical proofs.
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Diagrams and formulas: On the contents of representations in mathematics
According to the usual contemporary definition, a mathematical proof is at 
bottom a sequence of sentences, each of which follows from the preceding 
ones or is an axiom or assumption. In some mathematical practices, however, 
proofs contain elements other than sentences, and so do not easily fit this 
definition.  The proofs in Euclid’s Elements, for instance, often make essential 
use of geometrical diagrams (see [1]). Can we still consider them proofs? 
How did Euclid use the diagrams to ensure reliable reasoning? Motivated 
by epistemological questions of this kind, many scholars associated with the 
philosophy of mathematical practice have studied diagrammatic reasoning 
in recent years (see for instance the papers in [2]). My goal in this presentation 
would be to argue that the use of symbolic formulas in proofs can raise some 
of the same issues as the use of diagrams: formulas, or symbolic expressions 
more generally, cannot unproblematically be treated like sentences in natural 
language. Indeed, we will see that formulas are sometimes used not so much 
in order to assert specific claims (“such-and-such a complex relation holds 
between quantities x,y,z”), but rather as displays from which various pieces 
of information may be extracted: for instance, I may derive and write down 
a complex formula linking x and y only in order to observe that x is given 
by a second-degree polynomial in y. In other words, formulas are not just 
asserted; they are inspected, much like diagrams are. To substantiate this 
claims, I will examine the use of formulas in several episodes of the early 
history of the calculus of operations, in the late seventeenth and eighteenth 
centuries. By calculus of operations, I refer to the manipulation of operators, 
for instance the “d” of differentiation, as algebraic quantities whose powers 
correspond to iterated applications of the operator. The earliest incarnation 
of this idea is Leibniz’s “analogy between powers and differences”, developed 
in 1695 in correspondence with Johann Bernoulli. Leibniz and Bernoulli’s 
idea will be taken up again by Lagrange; various authors will then try, in 
the last decades of the eighteenth century, to put these methods on a solid 
footing, first and foremost Laplace.
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